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Abstract

This project contributed new principles for the development of intelligent, mobile robots
performing complex tasks in unpredictable environments. In the behavior-based approach to
robot design, the overall performance of the robot arises through the interaction of multiple,
relatively simple, behaviors. The manual design of multiple interacting behaviors is difficult,
labor-intensive and error-prone. One way to reduce the effort in the design of behavior-based
robots is to develop an evolutionary approach in which the various behaviors, as well as their
modes of interaction, evolve over time. Evolution may also provide a basis for the development
of strategies for multiple-robot environments, for example, environments in which a robot is
expected to adapt its behavior based on the current behavior of other agents or environmental
conditions which themselves are changing over time. This project addressed in four complemen-
tary areas concerning the effectiveness of evolutionary algorithms for the design of autonomous
robots: (1) learning multiple behaviors by asynchronous co-evolution; (2) continuous and em-
bedded learning; (3) comparison with other reinforcement learning methods, and (4) the ability
to evolve responses to changing environments. Results in each of these tasks are reported.

1 Executive Summary

This is the Final Technical Report for Grant No. N00173-98-1-G010, Topics in Evolutionary Com-
putation, performed by John Grefenstette at George Mason University in response to NRL BAA
705. The general research topic addressed by this project concerned the applicability of genetic
algorithms to robotic learning. The specific research objectives were as follows:

e To improve the understanding of evolution as a process that produces robust organisms that
are well-adapted to complex environments;

o To improve methods for designing multi-agent systems that exhibit robust and adaptive col-
lective behavior. Multi-agent systems include both behavior-based robots in which agents are
identified with individual behaviors and multiple-robot cooperative systems.
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This project contributed to ongoing work at NRL on new principles for the development of intelli-
gent, mobile robots performing complex tasks in unpredictable environments. In the behavior-based
approach to robot design, the overall performance of the robot arises through the interaction of mul-
tiple, relatively simple, behaviors. The manual design of multiple interacting behaviors is difficult,
labor-intensive and error-prone. One way to reduce the effort in the design of behavior-based robots
is to develop an evolutionary approach in which the various behaviors, as well as their modes of
interaction, evolve over time. Evolution may also provide a basis for the development of strategies
for multiple-robot environments, for example, environments in which a robot is expected to adapt its
behavior based on the current behavior of other agents or environmental conditions which themselves
are changing over time.

This work was performed in collaboration with the Adaptive Systems Group (Code 5514) at the
Navy Center for Applied Research in Artificial Intelligence at NRL. Principles of co-evolutionary
design were investigated in the context of co-evolving competitive and cooperative behaviors in
mobile robots. This project addressed in four complementary areas concerning the effectiveness of
evolutionary algorithms for the design of autonomous robots:

e Learning multiple behaviors by asynchronous co-evolution,
¢ Continuous and embedded learning,
e Comparison with other reinforcement learning methods, and

e Ability to evolve responses to changing environments.

The following section summarizes the results in each area. Detailed descriptions appear in the
Appendices.

2 Summary of Results

2.1 Learning Multiple Behaviors by Asynchronous Co-evolution

This project addressed the ability of autonomous robots to learn complex behaviors by co-evolution.
Using a behavior-based approach, the overall performance of the robot arises through the interaction
of multiple, relatively simple behaviors, here called agents. This project advanced the state of the
art in the automated learning of multiple agents. We designed, implemented and tested a number of
alternative decompositions for complex tasks. In particular, we focused on the effect of dependencies
among the learning agents, that is, what a given learning agent needs to know about the other agents
in the system. These issues were examined in the context of a particular performance task in which
the robot was required to track another moving agent for a prolonged period of time, without
colliding with obstacles or the other agent, and without running out of fuel. If fuel becomes low, the
robot must return to a docking station and re-fuel. All decisions about tracking strategy, docking
strategy, and when to apply each strategy, is under control of the learning system.

In asynchronous learning, each evolving agent informs the other learning agents whenever it discov-
ers an improved behavior, so that the improved behavior can be incorporated in the other agent’s
world model. Two asynchronous learning regimes were considered: an independent regime in which
behaviors were learned as if each behavior was the only task in the system, and a mutual regime in
which each behavior is learned using the best current agent for the other behaviors in the system. Ex-
tensive computational simulations demonstrated that independent regime consistently outperforms




the mutual regime in asynchronous learning. Details appear in Appendix A. These results were
presented at the 1999 SPIE Symposium on Intelligent Systems and Advanced Manufacturing. [1].

2.2 Continuous and Embedded Learning

An important problem arising in robots that are expected to perform autonomously for extended
periods is how to adapt the robot’s rules of behavior in response to unexpected changes in its
own capabilities. For example, suppose the robot periodically checks its sensors and its ability to
perform basic actions. If it finds that some sensors or actions are no longer available, perhaps due
to a problem with the robot’s hardware or due to some undetected environmental cause, then it
must learn new rules for performing its mission that use whatever remaining capabilities are still
available.

We have developed an approach to this problem called Continuous and Embedded Learning (CEL).
In this approach, the robot interacts both with the external environment and with an internal
simulation. The robot’s execution module controls the robot’s interaction with the environment,
and includes a monitor that dynamically modifies the robot’s internal simulation model based on
the monitor’s observations of the actual robot and the sensed environment. The robot’s learning
module continuously tests new strategies for the robot against the simulation model, using a genetic
algorithm to evolve improved strategies, and updates the knowledge base used by the execution
module with the best available results. Whenever the simulation model is modified due to some
observed change in the robot or the environment, the genetic algorithm is restarted on the modified
model. The learning system operates indefinitely, and the execution system uses the results of
learning as they become available.

In this project, we examined the CEL model in the face of sensor failures, specifically, how the
robot can learn to adapt to failures in its sensor capabilities over time. We show that a robot adapt
to the partial loss of its sensors and learn to use different sensors to continue to perform a door
traversal task. Both simulation studies and experiments on an actual mobile robot showed that the
approach yields effective adaptation to a variety of partial sensor failures. The robot used in these
experiments is a Nomadic Technologies Nomad 200 mobile robot, a three-wheeled, synchronized-
steering vehicle used in experimental studies at NRL. The internal simulation used by the robot for
learning approximated the Nomad robot’s sensors and effectors.

In simulation studies, the robot initially learned to improve its performance of the task from 25%
to 63% with all seven sonar sensors operating. Upon the failure of three sonars (front, front right,
and right), performance initially dropped to 37%, but then rebounded to over 60% as the monitor
identified the failed sonars, modified the simulation, and the learning system adapted to the new
simulation model. These results were verified by repeating the same rules on the Nomad robot, both
with and without sensor disabled.

These result indicate that the Continuous and Embedded Learning model is a promising approach
to adapting to partial sensor failures. Combined with our previous work showing adaptation to
changing environments and actuator failures (2, 3, 4], this work indicates the generality of the CEL
model for the design of robust autonomous robot systems. Appendix B describes the results in
detail. These results were presented at the 2000 SPIE Symposium on Unmanned Ground Vehicle
Technology. [5) ‘




2.3 Comparison with Other Reinforcement Learning Methods

Reinforcement le_:afning (RL) provides a flexible approach to the design of intelligent agents in sit-
uations for which both planning and supervised learning are impractical. RL can be applied to
problems for which significant domain knowledge is either unavailable or costly to obtain. For ex-
ample, designers of autonomous robots often lack sufficient knowledge of the intended operational
environment to use either the planning or the supervised learning regime to design a control policy
for the robot. In this case, the goal of RL would be to enable the robot to generate effective decision
policies as it explores its environment.

There are two main approaches to finding the optimal policy, one involves search in policy space
and the other involves search in value function space. Policy space search methods maintain explicit
representation(s) of policies and modify them through a variety of search operators. Many search
methods have been considered including dynamic programming, value iteration, simulated anneal-
ing, and evolutionary algorithms. In contrast, value function methods do not maintain an explicit
representation of a policy. Instead, they attempt learn the value function which returns the expected
cumulative reward for the optimal policy from any state. The focus of research on value function
approaches to RL is to design algorithms that learn these value functions through experience. The
most common approach to learning value functions is the temporal difference (TD) method. The
TD learning algorithm uses observations of prediction differences from consecutive states to update
value predictions. Both approaches assume limited knowledge of the underlying system and learn
by experimenting with different policies and using reinforcement to alter those policies. Neither
approach requires a precise mathematical model of the domain, and both may learn through direct
interactions with the operational environment. In an article published in the Journal of AI Research,
we reviewed the application of evolutionary algorithms for reinforcement learning (EARL), empha-
sizing alternative policy representations, credit assignment methods, and problem-specific genetic
operators. Strengths and weaknesses of the evolutionary approach to reinforcement learning were
examined, along with a survey of representative applications. )

Unlike TD methods, EARL methods generally base fitness on the overall performance of a policy. In
this sense, EA methods pay less attention to individual decisions than TD methods do. While this
appears to make less efficient use of information, it may in fact provide a robust path toward learning
good policies, especially in situations where the sensors are inadequate to observe the true state of
the world. Evolutionary algorithms for RL use a distinctive set of representations for policies. First,
policies may be represented either by condition-action rules or by neural networks. Second, policies
may be represented by a single chromosome or the representation may be distributed through one
or more populations.

We also considered the different approaches to credit assignment in the TD and EA methods. In a
reinforcement learning problem, payoffs may be sparse, that is, only associated with certain states.
Consequently, a payoff may reflect the quality of an extended sequence of decisions, rather than any
individual decision. For example, a robot may receive a reward after a movement that places it in
a “goal” position within a room. The robot’s reward, however, depends on many of its previous
movements leading it to that point. A difficult credit assignment problem therefore exists in how
to apportion the rewards of a sequence of decisions to individual decisions. In general, EA and TD
methods address the credit assignment problem in very different ways. In TD approaches, credit
from the reward signal is explicitly propagated to each decision made by the agent. Over many
iterations, payoffs are distributed across a sequence of decisions so that an appropriately discounted
reward value is associated with each individual state and decision pair. In EARL systems, rewards
are only associated with sequences of decisions and are not distributed to the individual decisions.
Credit assignment for an individual decision is made implicitly, since policies that prescribe poor




individual decisions will have fewer offspring in future generations. By selecting against poor policies,
evolution automatically selects against poor individual decisions. That is, building blocks consisting
of particular state-action pairs that are highly correlated with good policies are propagated through
the population, replacing state-action pairs associated with poorer policies.

The EA approach represents an interesting alternative for solving RL problems, offering several
potential advantages for scaling up to realistic applications. In particular, EARL systems have been
developed that address difficult challenges in RL problems, including;:

e Large state spaces;
e Incomplete state information; and

o Non-stationary environments.
Areas that are especially challenging for evolutionary approaches to RL include:

e Online learning: Time and safety concerns argue in favor of using EA when a sufficiently rich
simulation environment allows offline learning.

e Rare states: EA do not necessarily preserve information about rarely occurring states.

e Proofs of Optimality: Further theoretical tools are required to provide assurance of EA per-
formance.

EARL and TD, while complementary approaches, are by no means mutually exclusive. There are
examples of successful EARL systems such as SAMUEL that explicitly incorporate TD elements into
their multi-level credit assignment methods. It is likely that many practical applications will depend
on these kinds of multi-strategy approaches to machine learning. The complete article [6] appears
in Appendix C.

2.4 Responses to Changing Environments

The environment of autonomous systems can be expected to vary over time. We examined the abil-
ity of genetic algorithms to respond to changing environments under evolutionary control. A genetic
algorithm can use its population to good advantage in tracking changing objective functions. To
the extent that the population remains relatively diverse, the genetic algorithm can maintain a bal-
ance between exploration (enforced by recombination and mutation) and exploitation (enforced by
selection pressure). As a result, a genetic algorithm can track a slowing varying landscape without
difficulty. For more rapidly changing environments, some additional mechanisms may be needed.
‘Previous work by the PI addressed specific ways to improve the performance of genetic algorithms
in dynamic environments [7, 8]. First, the use of periodic global hypermutation, effectively kicking
the population into a temporary random exploration mode, was shown to perform well in abruptly
changing landscapes. Second, a method that replaced a fixed percentage of the population each gen-
eration by random immigrants, i.e., population members that were uncorrelated with the members
of the existing population, was shown to be especially effective on gradually shifting landscapes, and
resulted in greater search efficiency than a fixed rate of hypermutation on stationary landscapes.
Building on these previous results, we showed that hypermutation can be controlled genetically,
resulting in a hypermutation rate that adapts to the volatility of the fitness landscape, increasing
in response to abrupt shifts and decreasing when the landscape stabilizes. Such an approach may




be very well-suited for optimizing the fitness landscape that of an autonomous robot in a dynamic
environment. These results were published in the 1999 Congress on Evolutionary Computation [9],
and are included as Appendix D.

3 Conclusions

This project made contributions in four areas concerning the effectiveness of evolutionary algorithms
for the design of autonomous robots:

o Learning multiple behaviors by asynchronous co-evolution,
o Continuous and embedded learning,
e Comparison with other reinforcement learning methods, and

o Ability to evolve responses to changing environments.

The result of this project shows that the Continuous and Embedded Learning model is a promising
approach to adapting to changes such as partial sensor failures. Further work is required to inves-
tigate the ability to adapt to realistic combinations of sensor and actuator failures, and to quantify
the limits of adaptability under this model.
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ABSTRACT

One approach to the design of intelligent autonomous robots is through evolutionary computation. In this approach,
the robot’s behavior is evolved through a process of simulated evolution, applying the Darwinian principles of
survival-of-the-fittest and inheritance-with-variation to the development of the robot’s control programs. In previous
studies, we illustrated this approach on problems of learning individual behaviors for autonomous mobile robots.
Our previous work has focused on tasks which were reasonably complex, but which required only a single behavior.
In order to scale this approach to more realistic scenarios, we now consider methods for evolving complex sets of
tasks. Our approach has been to extend the basic evolutionary learning method to encompasses co-evolution, that
is, the simultaneously evolution of multiple behaviors. This paper addresses alternative designs within this basic
paradigm. Specifically, we focus on dependencies among the learning agents, that is, what a given learning agent
needs to know about other agents in the system. By using domain knowledge, it is possible to reduce or eliminate
interactions among the agents, thereby reducing the effort required to co-evolve these agents as well as reducing the
impediments to learning caused by these interactions.

Keywords: Robot, Learning, Genetic Algorithms, Coevolution, Evolutionary Algorithms

1. INTRODUCTION

One approach to the design of intelligent autonomous robots is through evolutionary computation. In this approach,
the robot’s behavior is evolved through a process of simulated evolution, applying the Darwinian principles of survival-
of-the-fittest and inheritance-with-variation to the development of the robot’s control programs. In previous studies,
we illustrated this approach on problems of learning individual behaviors for autonomous mobile robots. Using
an evolutionary learning system called SAMUEL, we have been able to evolve robot behaviors including navigation,
collision avoidance, tracking and herding. Our previous work has focused on tasks which were reasonably complex,
but which required only a single behavior. In order to scale this approach to more realistic scenarios, we now
consider methods for evolving complex sets of tasks. Our approach has been to extend the basic evolutionary
learning method to encompass co-evolution, that is, the simultaneously evolution of multiple behaviors. This article
addresses alternative designs within this basic paradigm.

We adopt a behavior-based approach in which the overall performance of the robot arises through the interaction
of multiple, relatively simple, behaviors, or agents. In traditional behavior-based robot design, both the individual
behaviors and their modes of interaction (e.g., arbitration priorities, patterns of inhibition, etc.) have to be pro-
grammed manually. The main goal of our current research is to consider alternative automated methods for training
the separate behavioral modules including their interactions in a multi-agent architecture. In particular, we are
examining a set of co-evolutionary designs for alternative decompositions of a single task. Each of these designs has
been implemented and tested, and the results have been analyzed to obtain a set of conditions under which various
methods of co-evolutionary are likely to prove useful, as well as conditions that may lead to failure. This effort
provides valuable information for future designs of co-evolutionary approaches to the design of multi-agent systems.

Send correspondence to schultz@aic.nrl.navy.mil. Proc. of the SPIE Int. Symp on Intelligent Systems and Advanced
Manufacturing (ISAM ’99), 19-22 Sept 1999, Boston MA.
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Figure 1. Some modes of agent interactions

In this paper, we focus on dependencies among the learning agents, that is, what a given learning agent needs to
know about other agents in the system. By using domain knowledge, it is possible to reduce or eliminate interactions
among the agents, thereby reducing the effort required to co-evolve these agents as well as reducing the impediments
to learning caused by these interactions.

1.1. Behavior Engineering

Building on previous work in behavior-based robotics,!® Dorrigo and Colombetti* outline an approach called
behavior engineering in which machine learning techniques play a central role in increasing the behavioral quality of
autonomous agents. In brief, the approach follows the following outline:

1. Complex behaviors are specified in terms of simpler component behaviors.
2. Each component behavior is mapped into a single behavioral unit comprising a learning module.

3. The agent is trained on the component behaviors according to a shaping polz’éy.

How to choose the proper decomposition into component behaviors is, of course, of primary concern in this
approach, but it is not the only critical concern. Even for problems (such as the ones we consider in this paper)
where the “natural” or “obvious” decomposition will succeed, just how the agents interact with each other will have
a tremendous impact on the success of the overall learning problem. Next, we briefly outline some of these issues
arising in co-evolving autonomous systems.

1.2. Interactions Among Co-evolving Agents

In the behavior engineering paradigm, the agents perform behaviors with pre-defined roles within the system. Agents
might perform tasks at a variety of levels of deliberation and abstraction, interacting with other agents as needed.
For example, a multi-agent mobile robot might include one agent that performs navigation, one agent that performs
collision avoidance and another agent that performs higher-level executive planning. Additionally, these agents may
have vastly differing rates of decision making. The agent that performs collision avoidance would be much more
frequently active than, say, the one that chooses the next destination.

In a non-learning multi-agent system, each agent can be provided with a fixed set of rules for interacting with other
agents. In a multi-agent system in which the agents learn, the situation is much more complex since the capabilities
of the learning agents presumably change over time. Let’s briefly consider the various modes of interaction among
learning agents. This discussion focuses on dependencies among learning agents, that is, what a given learning agent
needs to know about other agents in the system. In the following figures, an arrow A — B (read, “A depends on
B”) indicates that learning agent A needs to include a model of agent B in its learning environment. In other words,
A can’t learn to perform its task without some knowledge of how B performs its own task. We will give examples
from the field of autonomous mobile robots.

Two of the most common dependencies among agents are shown in Figure 1. Here, agent A is an executive
decision maker that invokes subordinate agents B and C. If the executive is a learning agent, it needs a model of all
subordinates in order to evaluate its own policies. What do the subordinates need to know about each other?
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Figure 1(a) corresponds to the case in which the subordinates perform mutually exclusive behaviors. For
example, agent B might perform the behavior “Track-another.robot” and agent C might perform the behavior
“Dock.at_the_refueling_station”. The executive decides when to perform each task, perhaps based on considerations
such as the urgency of knowing the other robot position and the current fuel level. In the case of such mutually
exclusive agents, the two subordinate agents can learn their own tasks without a model of their sibling task(s).
For example, in the training environment used by the two sibling agents, the tracking agent is always required to
track and the docking agent is always required to dock. The individual agents need not model how their siblings
behave, since that is irrelevant to the performance of their own subtask. In addition, each subordinate agent can be
trained using a trivial model of the executive agent, in which the executive always chooses the learning agent. In
this particular instance we refer to the sibling agents’ independence of the remaining agents as learning off-line.

Consider the situation in Figure 1(b) where all three agents depend mutually on one another to solve a particular
task. This is the most general relationship among three agents and is the one that would be presumed in the
absence of any specific knowledge regarding agent interactions. For example, let the agents be as described above for
Figure 1(a), where we “ignore” the actual interactions and use those of Figure 1(b) instead. The sibling agents are no
longer independent of the other agents, and cannot use the specialized (off-line) executive agent. What difference can
it make? Firstly, such an executive agent is desirable not only from the viewpoint of simplicity but also with regard
to how much experience it provides to the learning agent. This raises the very important point that, particularly
for relationships such as the executive-subordinate one, an agent’s ability to learn can be affected by how often it is
activated by another agent. For example, if in the course of learning its own task the executive loses confidence in
the ability of agent B to dock, it may simply decide to stop docking altogether, thereby starving agent B of necessary
learning experience.

The preceding suggests that there is a partial ordering of the interaction graphs according to the availability (or
use) of domain knowledge, where additional knowledge is used to eliminate, where possible, interactions. Thus, 1(a)
can be viewed as a refinement of 1(b).

We will conclude this section with a review of related work. In the following sections, we will describe the SAMUEL
learning agent, method of coevolution used in this paper, the performance task and the learning methodology, and
then present simulation studies and results.

1.3. Related Work

Our approach adopts a model of evolving agents based on SAMUEL, a system that learns policies expressed as sets
of decision rules using genetic algorithms.® SAMUEL has been used successfully in many reinforcement learning
applications. Schultz and Grefenstette,2!® used SAMUEL to learn collision avoidance and local navigation behaviors
for a Nomad 200 mobile robot. Schultz and Grefenstette,!! also used SAMUEL to evolve herding behaviors. In this
task, the learning robot was required to herd a target robot to a “pasture”.

The topic of co-evolutionary systems has received increased attention lately. Rosen and Belew!? have proposed
novel co-evolutionary methods for two player games. Bull, Fogerty and Snaith!? also have studied different regimes
for cooperative tasks. This study follows up on these studies, comparing a larger number of co-evolutionary regimes
on a more complex multi-agent task, using a genetic algorithm that learns symbolic reactive rules (SAMUEL).

Potter'®15 has investigated a model of collaborative cooperative co-evolution. In this system, problem decompo-
sition was an emergent property of the system, rather than a designed feature as in the present study. Individuals
from multiple co-evolving “species” were evaluated in the context of the current best individuals from each of the
other species. Individuals were rewarded based on how well they cooperated with representatives of other species.
On a variety of tasks including parameter learning, string matching, neural network design and concept learning,
Potter found that the cooperative co-evolution approach was able to discover important environmental niches and
that subcomponents with the appropriate level of generality emerged to cover the available niches. Furthermore,
the co-evolving subcomponents were able to adapt to changing fitness landscapes. Finally, the addition of dynamic
species creation and extinction events resulted in the emergence of an appropriate number of subcomponents for
the problem being solved. Later in this paper, we consider an approach based on cooperative co-evolution, called
asynchronous co-evolution.
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Figure 2. SAMUEL: An Evolutionary Learning System.

2. THE SAMUEL LEARNING AGENT

We adopt a model of evolving agents based on SAMUEL, a system that learns policies expressed as sets of decision
rules using genetic algorithms. What follows is a brief description of SAMUEL and further details can be found in.®
SAMUEL maintains a population of competing policies, as shown in Figure 2. Policies are evaluated by running a
simulation of the task environment in which the learning agent uses the given policy to perform its task. Each attempt
to perform a task is called an episode. After each episode, an automated critic provides an overall assessment that
scores the performance of the learning agent on the given task. We are especially interested in complex environments
in which the learning agent must deal with a variety of conditions, including noisy sensors, imprecise actuators and
other independent agents. To reflect this environmental complexity, we typically average the performance of a given
policy over many learning episodes, changing the environmental conditions for each episode.

Once all policies in the population have been evaluated, SAMUEL generates a new population of policies in three
steps, as shown in Figure 2. First, policies are selected for reproduction based on their observed fitness. Second, the
selected policies are recombined by exchanging rules between parent policies. Finally, changes (mutations) are made
to generate new rules that are slight variations or combinations of existing rules. Rules that are active during high
performance episodes are exchanged as a group, in order to promote the spread of effective behaviors throughout the
population.

The input to SAMUEL agents are called sensors and their control variables are called actions. A policy is a set of
decision rules of the form:

IF ¢1 AND ... AND ¢, THEN SET a; AND ... AND a,

where each c; is a condition on one of the sensors and each action a; specifies a setting for one of the control variables.
During each decision cycle, the sensors determine which rules in the policies match the current state. All matching
rules bid for the action values specified on their right-hand-sides. Conflicts are resolved based on the strength of the
bidding rules, where strength is a numeric measure of the past performance of the rule.

SAMUEL uses a single-chromosome, rule-based representation for policies, that is, each member of the population
is a policy represented as a rule set and each gene is a rule that maps the state of the world to actions to be performed.
An example rule (gene) might be:

IF range = [35,45] AND bearing = [0,45] THEN SET turn = 16 (strength 0.8)
This rule would match the current state of the sensors if the range were between 35 and 45 inches inclusively, and

the bearing were between 0 and 45 degrees inclusively, and it would recommend a turning rate of 16 degrees.

In addition to the usual genetic operators of crossover and mutation, SAMUEL uses more traditional machine
learning techniques in the form of Lamarckian operators which create additional altered rules based on an agent’s
experiences.18
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Figure 3. Asynchronous Co-evolution Model. All GAs run asynchronously. Each GA uses a model of other learning
agents that can be updated asynchronously by the other GAs.

3. METHODS OF CO-EVOLUTION

There are many methodologies in training separate behavior modules in a multi-agent architecture. In this paper we
will use a particular method, asynchronous co-evolution, in order to study the use of domain knowledge to reduce
interactions between behaviors and thereby to improve the ability to co-evolve multiple behaviors.

In Asynchronous Co-evolution, all learning agents evolve simultaneously (Figure 3). Each learning agent has a
separate genetic algorithm. Within a given agent’s genetic algorithm, the learning agent is evaluated in the context
of a simulation model which includes the other agents as part of the learning environment. Alternative regimes for
asynchronous co-evolution are distinguished by their strategies for updating the models of external agents, i.e., what
each sees of the other agents’ behaviors. For example, if agent A and agent B are both evolving, agent A might use
a model for agent B based on (i) B’s current policy (being evaluated in B’s genetic algorithm), (ii) B’s best-so-far
policy, (iii) a policy selected at random from a collection of B’s best policies, etc. (See Section 5).

4. THE PERFORMANCE TASK: TRACKING UNDER FUEL CONSTRAINTS

Our case study focuses on a particular tracking task, one that reflects several plausible constraints likely to be
encountered by real autonomous vehicles. In this task, an autonomous mobile robot, or the Robot, is assigned to stay
within observation distance of another mobile agent, the Target for a prolonged period of time, as shown in Figure 4.
The Target performs a random walk combined with obstacle avoidance. The Robot’s performance is measured by
its mean squared error from the ideal tracking distance. It is considered a mission failure if the Robot collides with
the Target or with the walls surrounding the tracking area.

The Robot must also deal with fuel constraints. The Robot has a fixed maximum fuel capacity. The amount of
fuel consumed increases linearly with the Robot’s speed and turning rate. If the Robot runs out of fuel, it must be
towed back to the dock and refilled. Since the Robot’s performance is based on the time spent successfully tracking
the Target, the time spent being towed significantly decreases the overall performance. Fortunately, the Robot may
obtain additional fuel by docking at the fuel station. In order to dock successfully, the robot must approach the front
of the dock from not more than 15 degrees to either side, and at a speed no greater than 4 inches per second (ips).
If docking is successful, the Robot’s fuel tank is refilled and it can continue tracking the Target.

For this task, five abstract sensors are defined for the Robot: the range and bearing from it to the nearest
object, the Target’s heading with respect to the Target’s bearing, and the range and bearing from the Robot to the
Target. These abstract sensors are derived from information available through the actual sensors on the Nomad 200
mobile robots. The abstract sensor values are all discretized. The bearing values are partitioned into intervals of five
degrees. The range is partitioned into intervals of five inches from 0 to 150 inches. The heading is partitioned into
45 degree segments. The learned actions are velocity mode commands for controlling the translational rate and the
steering rate. The translation is given as -4 to 16 inches/sec in 4 inch/sec intervals. The steering command is given
in intervals of 4 degrees/sec from -24 to 24 degrees/sec. So, a typical rule for the learning robot might be:
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Figure 4. The Tracking Task with Fuel Constraints.

IF range = [35, 45] AND bearing = [340, 35] THEN SET turn = -24 (Strength 0.8)
To maximize the tracking time, a good strategy for the Robot would be something like:

Repeat forever:

1. Acquire tracking on the Target as quickly as possible
2. Continue tracking until gas-tank is nearly empty
3. Quickly move to dock and refuel

4.1. Task Decomposition
In order to accomplish this behavior we provide the Robot with one or more internal agents, each of which learns a

specific part of the behavior. Although our research is considering different behavior architectures for the Robot, in
this paper, we consider only the following architecture:

Two Level Behavior Architecture

The Robot has three learning agents:

Tracking Task:
Initiate and continue tracking on Target.

Docking Task:
Move to dock and refuel.

Executive Task:
Arbitrate between Tracking Task and Docking Task.

This is an instance of a two-level switch hierarchical architecture. The Executive is the high-level agent that decides
which lower level subtask to perform. Figure 1(a) describes the agent interactions in this architecture (see Section 1.2
for a discussion of this).

5. LEARNING METHODOLOGY

The decomposition of the performance task in the previous section represents one dimension of the design problem
for learning in autonomous robots. The second dimension is the method employed for the co-evolution of each of the
resulting subtasks, which was described in Section 3. The third dimension is the model of dependencies among the
behaviors.

Two experimental regimes are studied in this paper, asynchronous coevolution with complete dependencies, and
asynchronous co-evolution with domain knowledge limited dependencies. For each learning regime we performed 10
simulation runs and the graphs associated with each regime represent the average over these 10 experiments.
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5.1. Asynchronous Co-evolution

In the asynchronous co-evolution method, the Tracking Task and the Docking Task evolve independently in iso-
lation but concurrently, and the Executive Task evolves using the (best) rules which have been evolved for the
Tracking Task and the Docking Task so far.

Regime Mutual:

All tasks evolve asynchronously using the best rules evolved so far for the other tasks. This regime
is inherently non-repeatable since the actual course of evolution for the Executive Task depends
on CPU scheduling for the Tracking Task and the Docking Task. These experiments required
three separate GAs to be running (one for each task to be learned) simultaneously. Each GA would
report its best-so-far policy to the two other GAs. Thus, the Tracking Task would learn in an
environment where the Executive and Docking policies used were the best-so-far produced by their
respective GAs, and similarly for the environment of the Docking Task and the Executive Task.
Figure 1(b) depicts the presumed agent interactions for this regime.

Regime Independent:
In this regime, the Tracking Task and Docking Task were independent and subordinate to the
Executive Task. Figure 1(a) depicts the presumed agent interactions for this regime. Because the
tasks were independent of each other and subordinate to the Executive Task, they could be first
learned offline which would allow us to simulate various rates of asynchrony during the learning of
the Executive Task. We found no appreciable differences in the rate of asynchrony.

Note that the essential difference between these two regimes is in the presumed agent interactions and depen-
dencies. In Regime Mutual, the best-so-far Executive behavior is used during the evolution of the Tracking Task
and the Docking Task, and in Regime Independent the Tracking Task and the Docking Task each evolve using
an Executive agent which always selects its task, i.e., the Tracking Task and the Docking Task learn off-line (see
Section 1.2).

6. SIMULATION STUDIES

We proceed now to a more detailed description of the simulation experiments including the fitness functions used,
the experimental parameters, initial behaviors of the agents, and the performance measures used to evaluate the
experiments. In order to understand some of these details it is necessary to briefly describe the timescales involved
in the experimental framework. The basic time unit is a step (which on the real robot amounts to about .5 sec.). At
each step whatever agent is controlling the robot will set its turning rate and its speed, thereby moving the robot in
its environment. The basic time unit of evaluation is an episode, which can last a maximum of 60 steps (or approx.
30 sec.). Episodes can be terminated before this if the Robot collides with another object (the Target, a wall, or
the Dock), or if it runs out of gas, or if it docks successfully. The Exec will decide at the beginning of each episode
whether to Track or to Dock. Thus, we see that the Executive Task has a different time granularity than either
the Docking Task or the Tracking Task, since it makes one decision per episode instead of one decision per step.
The last time division is an epoch, which can last a maximum of 10 episodes, and is meant to capture the do-forever
nature of the surveillance task. Epochs can be terminated prematurely by Robot collisions or out-of-gas, but not by
successful docking. Finally, at the beginning of each epoch the Robot and Target are positioned randomly within
the environment, and otherwise at the beginning of each episode they retain the position they had at the end of the
previous episode.

6.1. Fitness Functions for Individual Tasks

The Tracking Task and the Docking Task receive a payoff at the end of every episode. The Executive Task
receives a payoff at the end of every epoch, where if the epoch is terminated prematurely a “towing” time penalty is
assessed which is added to the total time of an epoch (as explained in Section 4);

Docking Task:
if successful dock, then payoff = .5 + .5 * (m/t), where m is the estimated minimum time to dock and t is the
time Robot took to dock.
if unsuccessful dock, then payoff = 0.
(Le., maximum payoff is received for minimum time docking.)
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Tracking Task:
if Robot collides with another object, then payoff = 0, otherwise payoff = % of total time during episode spent
tracking Target.

Executive Task:
payoff = % of total time during epoch spent tracking Target.
(Le., payoff = t/(e + p), where ¢ is the total steps spent tracking, and e is the number of steps in a standard
epoch (10 % 60), and p is the assessed towing time penalty).

6.2. Simmulation Parameters

All major simulation parameters were held fixed for all simulation runs.

¢ Generations = 50

e Population size = 50

e Individual evaluations (episodes) = 90

e Best individual evaluations (episodes) = 120, which is used for the learning curve graphs (see Section 6.3).
o Initial gas supply = 50%

¢ Dimension of environment = (300 inches x 300 inches)

e Tracking range = [40 inches, 60 inches]

) Towirig penalty = 50.

6.3. Performance Measures

We have chosen some specific measurements and statistics to assess how well each regime (and simulation experiment)
performed the overall task and to ascertain the reasons why some experiments failed to evolve an acceptable behavior.

In order to properly understand the experimental results and their interpretation it is necessary to consider the
following: The Robot’s energy consumption is such that if it were to remain motionless it could survive approximately
eight episodes before it ran out of energy. Even while it is moving slowing it can last up to four episodes. Once
the Robot has acquired the Target, it can usually maintain a track with only minimal movement (and hence energy
consumption). Since an epoch (or lifetime) is 10 episodes, the Robot must dock twice each epoch to achieve good
combined performance. Thus, the ideal ratio of tracking to docking is roughly 80% to 20%.

With this information we can now define the following measurements for regimes and individual experiments:

Learning Curve
This is the standard measurement of fitness of the best individual for each generation. Since the Executive
Task receive no credit while docking, the maximum fitness for these should be roughly 80%.

Quality Tracking
This is the percentage of episodes in which the Robot was within tracking distance of the Target for 80% of the
steps of that episode. In other words, these are episodes where there is a high level of tracking. Normally after
docking, one episode is required to reacquire the Target and four more episodes of tracking can occur before
the Robot must dock again, so a good tracker would score roughly 80% according to this measure.

Successful Docking
This is the percentage of episodes in which the Executive Task selected Docking as the objective and the
Robot docked successfully.

Average Epoch Length
This is the average number of episodes in an epoch (or lifetime). It provides us with a good measure of how
well the docking behavior is integrated into the Robot’s overall behavior. By the remarks above we see that
this ranges between a minimum of 4 episodes (no docking) and 10 episodes (good docking).
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Good Docking | Poor Docking No Docking

Regime Tracking Tracking Tracking
Hi | Med | Lo | Hi [ Med [ Lo [ Hi | Med | Lo
Mutual 1 4 |3 2

Independent | 5 | 5

Table 1. Qualitative assessment of individual experiments for the two-level task decomposition. Table entries are
the number of experiments with the specified criteria. Criteria are: Good Docking ~ 20% episodes with successful
docking; Poor Docking < 20% episodes with successful docking; No Docking < 5% selection of docking task; Hi
Tracking > 60% quality tracking; Med Tracking > 30% quality tracking; Lo Tracking < 30% quality tracking.

Finally, since the goal of this performance task is for the Robot to track (and dock) indefinitely, the real world
performance gap between those regimes in which docking was intergrated into the Robot’s behavior and those in
which it wasn’t can be expected to be much larger than what we have obtained here with an artificial lifetime of
only 10 episodes.

7. RESULTS

In the asynchronous approach each evolving task informs the others when it discovers an improved behavior so that
the others can use this improved behavior in their world model. We begin with the Mutual regime which involves
the least amount of domain knowledge (regarding agent interactions).

Table 1 lists the qualitative assessment for all the individual experiments. Table entries are the number of
experiments of the specified classification. These assessments are based on the following criteria:

Good Docking =~ 20% episodes with successful docking

Poor Docking « 20% episodes with successful docking

' No Docking < 5% selection of docking task (i.e., starvation of the Docking Task)
Hi Tracking > 60% quality tracking

Med Tracking > 30% quality tracking

Lo Tracking < 30% quality tracking

Med Tracking should be regarded as acceptable, albeit mediocre, performance.

7.1. Regime Mutual

Regime Mutual presumes that each task depends on all other tasks (see Figure 1(b)) so that during its coevolution
it must incorporate the best behavior discovered so far for all the other tasks. Figure 5 shows the results for this
regime.

This regime proved to be unsuccessful in coevolving acceptable performance. For 9 out of the 10 experiments
conducted the Executive Task never selected Docking as the objective, and in the one experiment where docking
was integrated into the Robot’s behavior the tacking quality was not high. Only 4 of the experiments showed good
tracking quality (and showed no docking). Since the coevolution of the Docking Task relies on using the best-so-far
Executive Task, if that task never selects Docking as the objective, then there is no possibility for the Docking
Task to improve its performance. In essence, it is starved for experience by an Executive Task which ignores it. In
the one experiment where it did learn to dock, the learning did not begin until half way through its evolution.

7.2. Regime Independent
The asynchronous approach represented by the Independent regime uses domain knowledge regarding the task depen-
dencies (see Figure 1(a)), viz., the Docking Task and Tracking Task are coevolved “offline” using special executive
behaviors which always select them as the objective task.

Figure 6 shows the learning curves for these experimehts. The results demonstrate the importance of incorporating

domain knowledge into the structure of the coevolution process. Recall, that the main difference between the
Independent and Mutual regimes is the agent interactions (cf. Figure 1(a) vs Figure 1(b)).
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8. DISCUSSION

this paper we have explored the application of co-evolutionary learning techniques to a learning problem for
bile robots. We chose the “natural” decomposition of the problem into several learning subproblems. However,

in addition to the right decomposition we showed that discerning the right relationships among the agents for these
learning problems was also necessary. Specifically, we showed that the Mutual regime failed to solve the learning
problem primarily because if failed to integrate the docking subtask. We conjecture/speculate that this was due to
the fact that the Executive Task starved the Docking Task of the necessary learning trials, thereby preventing it
from learning how to dock. The good news is that we have provided a co-evolutionary learning method (viz., the

Ind

ependent regime) which solves the learning problem satisfactorily and efficiently.
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APPENDIX B:

Continuous and Embedded Learning in Autonomous Vehicles:
Adapting to Sensor Failures

Alan C. Schultz®, and John J. Grefenstette®
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Washington DC, USA
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ABSTRACT

This project describes an approach to creating autonomous systems that can continue to learn throughout their lives,
that is, to be adaptive to changes in the environment and in their own capabilities. Evolutionary learning methods
have been found to be useful in several areas in the development of autonomous vehicles. In our research, evolutionary
algorithms are used to explore alternative robot behaviors within a simulation model as a way of reducing the overall
knowledge engineering effort. The learned behaviors are then tested in the actual robot and the results compared.
Initial research demonstrated the ability to learn reasonable complex robot behaviors such as herding, and navigation
and collision avoidance using this offline learning approach. In this work, the vehicle is always exploring different
strategies via an internal simulation model; the simulation, in turn, is changing over time to better match the world.

This model, which we call Continuous and Embedded Learning (also referred to as Anytime Learning), is a general
approach to continuous learning in a changing environment. The agent’s learning module continuously tests new
strategies against a simulation model of the task environment, and dynamically updates the knowledge base used by
the agent on the basis of the results. The execution module controls the agent’s interaction with the environment, and
includes a monitor that can dynamically modify the simulation model based on its observations of the environment.
When the simulation model is modified, the learning process continues on the modified model. The learning system
is assumed to operate indefinitely, and the execution system uses the results of learning as they become available.
Early experimental studies demonstrate a robot that can learn to adapt to failures in its sonar sensors.

Keywords: Robotics, Learning, Genetic Algorithms, adaptation, Evolutionary Algorithms

1. INTRODUCTION

An important problem arising in robots that are expected to perform autonomously for extended periods is how
to adapt the robot’s rules of behavior in response to unexpected changes in its own capabilities. For example,
suppose the robot periodically checks its sensors and its ability to perform basic actions. If it finds that some sensors
or actions are no longer available, perhaps due to a problem with the robot’s hardware or due to some undetected
environmental cause, then it must learn new rules for performing its mission that use whatever remaining capabilities
are still available.

We have developed an approach to this problem that we call Anytime Learning,'™% or more recently, Continuous
and Embedded Learning (CEL). In this approach, the robot interacts both with the external environment and with an
internal simulation. The robot’s execution module controls the robot’s interaction with the environment, and includes
a monitor that dynamically modifies the robot’s internal simulation model based on the monitor’s observations of
the actual robot and the sensed environment. The robot’s learning module continuously tests new strategies for
the robot against the simulation model, using a genetic algorithm? to evolve improved strategies, and updates the
knowledge base used by the execution module with the best available results. Whenever the simulation model is
modified due to some observed change in the robot or the environment, the genetic algorithm is restarted on the
modified model. The learning system operates indefinitely, and the execution system uses the results of learning as
they become available. '

Send correspondence to schultz@aic.nrl.navy.mil. Appeared in Unmanned Ground Vehicle Technology II, (Eds. Grant R.
Gerhart, Robert W. Gunderson, Chuck M. Shoemaker), Proceedings of SPIE Vol.4024, pg. 55-62, 2000.
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Figure 1. The Continuous and Embedded Learning Model

In this paper, we examine the CEL model with respect to sensor failures, specifically, how the robot can learn to
adapt to failures in its sensor capabilities over time. We show that a robot adapt to the partial loss of its sensors
and learn to use different sensors to continue to perform a door traversal task. A simulation study and execution on
an actual mobile robot shows that the approach yields effective adaptation to a variety of partial sensor failures.

- In the next section, we will describe the Continuous and Embedded Learning model. Section 3 discusses related
work. In Section 4 we will describe the task domain. This is followed by description of the modules of the CEL
model, and simulation and experimental results showing the adaptation of a robot to partial sensor failues.

2. CONTINUOUS AND EMBEDDED LEARNING

The Continuous and Embedded Learning model addresses the problem of adapting a robot’s behavior in response
to changes in its operating environment and its capabilities. The outline of the approach is shown in Figure 1.

There are two main modules in the CEL model. The ezecution module controls the robot’s interaction with
its environment. The learning module continuously tests new strategies for the robot against a simulation model
of the environment. When the learning module discovers a new strategy that, based on simulation runs, appears
to be likely to improve the robot’s performance, it updates the rules used by the execution module. The execution
module includes a monitor that measures aspects of the operational environment and the robot’s own capabilities,
and dynamically modifies the robot’s internal simulation model based on these observations. When the monitor
modifies the simulation because of an environmental change, it notifies the learning system to restart its learning
process on the new simulation.

This general architecture may be implemented using a wide variety of execution modules, learning methods, and
monitors. The key characteristics of the approach are:

e Learning continues indefinitely. This is unlike most machine learning methods, which employ a training phase,
followed by a performance phase in which learning is disabled. This lifetime learning is what allows the system
to be adaptive after being fielded.

e The learning system experiments on a simulation model. For most real-world robotic applications, experiment-
ing with the physical robot may be time-consuming or dangerous. Using a simulation models permits the safe
use of learning methods that consider strategies that may occasionally fail.

o The simulation model is updated to reflect changes in the real robot or environment. This is a secondary type
of learning of the model. While this is a major research issue in its own right, we are currently not concerned
with the learning at this level, and construct the monitor and simulation as appropriate. That is, we assume
that it is possible to monitor the condition of the robot’s sensors and actuators. For our purposes, it is not
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Figure 2. The door traversal task.

necessary to diagnose the cause of any detected failure, only the symptoms. We assume that the simulation
has been constructed to allow the instantiation of sensor and actuator failure modes.

This final point reflects our assumption that the robot designer generally has at least partial knowledge of the
robot and the environment. Knowledge that is relatively certain can be embodied in the fixed part of the simulation.
Such knowledge might include certain fixed characteristics of the physical environment (e.g., gravity), as well as some
aspects of the robot’s design and performance. On the other hand, the robot designer should also identify those
aspects of the environment and the robot’s capabilities that are uncertain, and include these as changeable parts of
the simulation module.

3. RELATED WORK

There has been a great deal of work done in the area of evolution of behaviors for autonomous robots. A very
common approach has been in the evolution of neural controllers for robots.®® An alternative approach has been
the evolution of stimulus-response rules.”

An interesting problem has been how to add on-line adaptation to these systems in order to handle problems such
as changes in the environment and to the robots capabilities. Early interesting work includes systems where both
the form and the function are coevolved,#!! but these systems have not performed studies yet on actual robots, nor
are these techniques useful for on-line performance.

Another very interesting area in the use of evolutionary algorithms on-line on real robots.!> While this does
allow a robot to be adaptive during performance, it is not clear whether this is appropriate for large robots in the
real world, where trial and error experimentation can lead to damage or dangerous behavior. Our approach solves
this problem by only allowing experimentation on a simulation that is internal to the robot.

4. PERFORMANCE TASK

This task requres a robot to go from one side of a room to the other, passing through an opening in a wall placed
across the room, as illustrated in Figure 2.

In each trial, the robot is placed randomly along the starting line four feet in front of the back wall, facing in a
randomly selected direction from -90 to 90 degrees (with O degrees facing the goal). The center of the front wall is
located 12.5 feet from the back wall. The room is 25 feet wide. The location of the six foot opening in the front wall
is also randomly selected each trial.




The robot must then reactively navigate through the opening reaching the goal line one foot beyond the wall,
by learning a set of rules which map the current sensors to the actions to be performed by the robot, at a one hertz
decision rate. The robot has a limited time to perform the task. Exceeding the time limit, or having a collision with
any of the walls ends the current trial. .

The robot used in these experiments is a Nomadic Technologies Nomad 200 Mobile Robot, a three-wheeled,
synchronized-steering vehicle. The internal simulation used by the robot for learning approximated the robots
sensors and effectors.

5. EXECUTION MODULE

The execution module for the robot includes a rule-based system that operates on reactive (stimulus-response) rules.
A typical rule might be:

IF range = [35, 45] AND front_sonar < 20 AND right_sonar > 50 THEN SET turn = -24 (Strength 0.8)

Each decision cycle, the execution system compares the left hand side of each rule to the current sensor readings,
selecting the best rule (after conflict resolution). That rule’s action is then executed causing the robot to move. This
is repeated until the robot succeeds or fails at the task.

In this task, the robot uses its seven front most facing sonars. Each sonar has a angular resolution of 22.5
degrees, with the front most sonar facing directly ahead, giving the robot a total sonar coverage of 157.5 degrees. We
designate these sonars as far_left, left, front_left, front, front.right, right, and far_right. Each sonar has a maximum
range of approximately 14 feet. The sonar values are all discretized; they are partitioned into intervals of 24 inches.
In addition to the sonars, the robot also has a sensor that gives the range to the goal from 0 to 14 feet in 5 inch
intervals, and the robots heading within the room from 0 to 359 degrees in 22.5 degree intervals.

The learned actions are velocity mode commands for controlling the translational rate and the steering rate of
the robot. The translation rate is given as -4 to 10 inches/sec in 2 inch/sec intervals. The steering command is given
in intervals of -10 degrees/sec from -30 to 30 degrees/sec. At each decision step, the system must choose a turning
rate and steering rate based on the current sensors.

The rule strength is set by the learning system to estimate the quality of the rule. The execution module uses
rule strengths to resolve conflicts among multiple rules that match the current sensors readings, but suggest different
actions. In such cases, rules with higher strength are favored. See!? for details.

5.1. The Monitor

In this study, the monitor periodically measures the output from the sonars, and compares them to recent readings
and to the direction of motion. If the robot is moving forward, and the value of the sonar reads zero repeatedly, that
particular sonar is marked as being defective. The monitor then modifies the simulation used by the learning system
to replicate the failed sonar. ‘ :

It is important to note that the monitor is required only to identify symptoms of problems, not the causes.

6. LEARNING MODULE

The learning module uses SAMUEL,'® a learning program that uses genetic algorithms and other competition-based
heuristics to improve its decision-making rules. Each individual in SAMUEL's genetic algorithm is an entire rule set,
or strategy, for the robot. We have previously reported on using SAMUEL to learn simple robot behaviors such as
navigation and collision avoidance,'*® robot herding,'® and in other complex domains.

When the monitor notices a failure in any of the seven sonars, the learning module’s population is re-initialized
and continues with the modified simulation model. In this study, we use 50% of the population at the time of the
detected failure and replace the other 50% with copies of the initial rule set (generally, go toward the goal line).

We have also used a case-based approach to re-initializing the population. The learning system re-initializes
the population of strategies in the genetic algorithm by finding nearest neighbors from the case base consisting of
previously learned strategies. Strategies in the case base are indexed by the capability list in place at the time
the strategy was learned. Using previously learned strategies to initialize the population allows the system to very
quickly adapt to situations that are similar to those seen before. See? for more details.




100 T | T

Best Performance

0] 20 40 60 80 100
Generations

Figure 3. Learning curve showing adaptation to sensor failures occurring at generation 50. Best performance
indicates the success rate for the best strategies in the current population. Results averaged over 10 runs.

7. EXPERIMENTAL METHODOLOGY

The robot begins with a set of default rules for moving toward to goal line, which give an initial success rate of 25%
of getting through the doorway. These initial rules basically give the robot the direction to the goal line, but say
nothing about obstacles or the walls themselves. The learning system starts with a simulation model that includeds
all sonars working.

After an initial period of learning, one or more sonars are then blinded. In simulation, the failed sonar was
modeled as a constant, minimum-value sonar reading; on the actual robot, one of the sonar sensors would be covered
with rigid material. Once the monitor detects the failed sensor, the learning simulation is adjusted to reflect the
failure, the population of competing strategies is re-initialized as described previously, and learning continues. The
online robot uses the best rules discovered by the learning systems since the last change to the learning simulation
model.

We initially ran an experiment with the robot adapting to a blinded front sonar after 50 generations, but the
performance dropped a non-significant amount before continuing to improve. This is indicative of the robust rules
that the SAMUEL system tends to learn. In a second experiment, we blinded the front sonar and the front_right
sonar, still without a significant drop in performance. In the results reported here, three sensors were failed (front,
front_right, and right). After the sensors were blinded, the system was allowed to continue for another 50 generations.

In these experiments we used threshold selection in the evolutionary algorithms in which the top 50% of the
population reproduces (producing two offspring each). The payoff function was based on the time it took for the
robot to reach the goal line. A collision resulted a a very low payoff, and exceeding the time limit resulted in a low
payoff.

8. RESULTS

8.1. Quantitative Results

The experiment was repeated ten times. Figure 3 shows the average performance over time for these ten runs. The
x-axis shows the generation, and the y-axis shows the external performance — the number of times out of 100 that the
robot succedded in getting through the opening. The dotted vertical line at generation 50 shows where the sensor
failed.

As can be seen from this learning curve, the robot initially learns to improve its performance in this task from
25% to 63% with all seven sonar sensors operating. At the beginning of generation 50, the three sonars (front, front
right, and right) fail. The performance then drops to 37%, but then continues to improve as the monitor identifies
the failed sonars, modifies the simulation, and learning continues with the new simulation model.
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Figure 4. Robot in motion with all sensors intact, a) during run and b) at goal.

Figure 5. Robot in motion after adapting to loss of three sensors, front, front_right and right, a) during run, and
b) at goal.

8.2. Qualitative Results

Qualitatively, we observed the following behaviors. Figure 4 shows the simulation with all of the sensors working.
The picture on the left shows the simulated robot during the run, while the picture on the right shows the robot
reaching the goal. In Figure 5, we see the simulated robot with three failed sonars as described above. The picture
on the left shows the robot during the run, while the picture on the right shows the robot at the goal. Note that
interesting behavior in the second set of pictures, as indicated by the trail showing the robot’s path. The robot uses
a swaying motion in order to sweep its working sensors across the space in front of the robot. This behavior allows
the robot to perform the task suucessfully.

In the experimental runs we performed, when the forward facing sensors are blocked, the robot initially responds
by refusing to move forward. This is fail-safe kind of response, as it allows the offline learning system to come up
with a better strategy while the online robot just sits there thinking.

Figure 6 shows shots of the actual robots. The first picture shows the robot finding the opening with its front
sonar, and proccedding straight at and through the opening. The second picture shows the front sonar covered to
simulate its failure. The third picture shows the robot solving the task after adapting to a sonar failure. Note that
it is now using a side sonar to find the opening and then turns towards the opening.

9. DISCUSSION

This work shows that the Continuous and Embedded Learning model is a promising approach to adapting to partial
sensor failures. When the monitor detects a sensor failure, it modifies the system'’s learning simulation. The learning
system operates indefinitely, and the execution system uses the results of learning as they become available. Combined




Figure 6. a) Robot with full sensors passing directly through doorway. b) Robot with front sonar covered. c)
Robot after adapting to covered sonar. It uses side sonar to find opening, and then turns into the opening.

with our previous work showing adaptation to changing environments and actuator failures,!™® this work indicates
the generality of the CEL model for the design of robust autonomous robot systems. Future work will investigate the
ability to adapt to combinations of sensor and actuator failures, and attempt to quantify the limits of adaptability
under this model.
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Abstract

There are two distinct approaches to solving reinforcement learning problems, namely, search-
ing in value function space and searching in policy space. Temporal difference methods and evolu-
tionary algorithms are well-known examples of these approaches. Kaelbling, Littman and Moore
recently provided an informative survey of temporal difference methods. This article focuses on the
application of evolutionary algorithms to the reinforcement learning problem, emphasizing alter-
native policy representations, credit assignment methods, and problem-specific genetic operators.
Strengths and weaknesses of the evolutionary approach to reinforcement learning are presented,
along with a survey of representative applications.

1. Introduction

Kaelbling, Littman, and Moore (1996) and more recently Sutton and Barto (1998) provide informa-
tive surveys of the field of reinforcement learning (RL). They characterize two classes of methods for
reinforcement learning: methods that search the space of value functions and methods that search
the space of policies. The former class is exemplified by the temporal difference (TD) method and
the latter by the evolutionary algorithm (EA) approach. Kaelbling et al. focus entirely on the
first set of methods and they provide an excellent account of the state of the art in TD learning.
This article is intended to round out the picture by addressing evolutionary methods for solving the
reinforcement learning problem. :

As Kaelbling et al. clearly illustrate, reinforcement learning presents a challenging array of
difficulties in the process of scaling up to realistic tasks, including problems associated with very large
state spaces, partially observable states, rarely occurring states, and non-stationary environments.
At this point, which approach is best remains an open question, so it is sensible to pursue parallel
lines of research on alternative methods. While it is beyond the scope of this article to address
whether it is better in general to search value function space or policy space, we do hope to highlight
some of the strengths of the evolutionary approach to the reinforcement learning problem. The
reader is advised not to view this article as an EA vs. TD discussion. In some cases, the two
methods provide complementary strengths, so hybrid approaches are advisable; in fact, our survey
of implemented systems illustrates that many EA-based reinforcement learning systems include
elements of TD-learning as well.

The next section spells out the reinforcement learning problem. In order to provide a specific
anchor for the later discussion, Section 3 presents a particular TD method. Section 4 outlines
the approach we call Evolutionary Algorithms for Reinforcement Learning (EARL), and provides a
simple example of a particular EARL system. The following three sections focus on features that

©1999 Al Access Foundation and Morgan Kaufmann Publishers. All rights reserved.
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distinguish EAs for RL from EAs for general function optimization, including alternative policy
representations, credit assignment methods, and RL-specific genetic operators. Sections 8 and 9
highlight some strengths and weaknesses of the EA approach. Section 10 briefly surveys some
successful applications of EA systems on challenging RL tasks. The final section summarizes our
presentation and points out directions for further research.

2. Reinforcement Learning

All reinforcement learning methods share the same goal: to solve sequential decision tasks through
trial and error interactions with the environment (Barto, Sutton, & Watkins, 1990; Grefenstette,
Ramsey, & Schultz, 1990). In a sequential decision task, an agent interacts with a dynamic system
by selecting actions that affect state transitions to optimize some reward function. More formally, at
any given time step ¢, an agent perceives its state s; and selects an action a;. The system responds by
giving the agent some (possibly zero) numerical reward r(s;) and changing into state si41 = 8(st, ar)-
The state transition may be determined solely by the current state and the agent’s action or may
also involve stochastic processes.

The agent’s goal is to learn a policy, = : S —+ A, which maps states to actions. The optimal
policy, ™*, can be defined in many ways, but is typically defined as the policy that produces the
greatest cumulative reward over all states s:

™ = argmax V" (s), (Vs) 1)

where V7(s) is the cumulative reward received from state s using policy 7. There are also many
ways to compute V7(s). One approach uses a discount rate vy to discount rewards over time. The
sum is then computed over an infinite horizon:

(>
V7™(st) = Z'YiTH-i 2)
=0
where r, is the reward received at time step t. Alternatively, V™(s) could be computed by summing
the rewards over a finite horizon h:

h
VT(s) =) reni : @)
=0
The agent’s state descriptions are usually identified with the values returned by its sensors, which
provide a description of both the agent’s current state and the state of the world. Often the sensors
do not give the agent complete state information and thus the state is only partially observable.
Besides reinforcement learning, intelligent agents can be designed by other paradigms, notably
planning and supervised learning. We briefly note some of the major differences among these ap-
proaches. In general, planning methods require an explicit model of the state transition function
&(s,a). Given such a model, a planning algorithm can search through possible action choices to find
an action sequence that will guide the agent from an initial state to a goal state. Since planning
algorithms operate using a model of the environment, they can backtrack or “undo” state tran-
sitions that enter undesirable states. In contrast, RL is intended to apply to situations in which
a sufficiently tractable action model does not exist. Consequently, an agent in the RL paradigm
must actively explore its environment in order to observe the effects of its actions. Unlike planning,
RL agents cannot normally undo state transitions. Of course, in some cases it may be possible to
build up an action model through experience (Sutton, 1990), enabling more planning as experience
accumulates. However, RL research focuses on the behavior of an agent when it has insufficient
knowledge to perform planning.
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Figure 1: A simple grid-world sequential decision task. The agent starts in state al and receives
the row and column of the current box as sensory input. The agent moves from one
box to another by selecting between two moves (right or down), and the agent’s score is
increased by the payoff indicated in each box. The goal is to find a policy that maximizes
the cumulative score. h

Agents can also be trained through supervised learning. In supervised learning, the agent is
presented with examples of state-action pairs, along with an indication that the action was either
correct or incorrect. The goal in supervised learning is to induce a general policy from the training
examples. Thus, supervised learning requires an oracle that can supply correctly labeled examples.
In contrast, RL does not require prior knowledge of correct and incorrect decisions. RL can be
applied to situations in which rewards are sparse; for example, rewards may be associated only with
certain states. In such cases, it may be impossible to associate a label of “correct” or “incorrect”
on particular decisions without reference to the agent’s subsequent decisions, making supervised
learning infeasible.

In summary, RL provides a flexible approach to the design of intelligent agents in situations
for which both planning and supervised learning are impractical. RL can be applied to problems
for which significant domain knowledge is either unavailable or costly to obtain. For example, a
common RL task is robot control. Designers of autonomous robots often lack sufficient knowledge of
the intended operational environment to use either the planning or the supervised learning regime
to design a control policy for the robot. In this case, the goal of RL would be to enable the robot
to generate effective decision policies as it explores its environment.

Figure 1 shows a simple sequential decision task that will be used as an example later in this
paper. The task of the agent in this grid world is to move from state to state by selecting among two
actions: right (R) or down (D). The sensor of the agent returns the identity of the current state.
The agent always starts in state al and receives the reward indicated upon visiting each state. The
task continues until the agent moves off the grid world (e.g., by taking action D from state aj).
The goal is to learn a policy that returns the highest cumulative rewards. For example, a policy
which results in the sequences of actions R, D, R, D, D, R, R, D starting from from state al gives the
optimal score of 17.
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2.1 Policy Space vs. Value-Function Space

Given the reinforcement learning problem as described in the previous section, we now address the
main topic: how to find an optimal policy, 7*. We consider two main approaches, one involves search
in policy space and the other involves search in value function space.

Policy-space search methods maintain explicit representations of policies and modify them through
a variety of search operators. Many search methods have been considered, including dynamic pro-
gramming, value iteration, simulated annealing, and evolutionary algorithms. This paper focuses on
evolutionary algorithms that have been specialized for the reinforcement learning task.

In contrast, value function methods do not maintain an explicit representation of a policy. In-
stead, they attempt learn the value function V7", which returns the expected cumulative reward for
the optimal policy from any state. The focus of research on value function approaches to RL is to
design algorithms that learn these value functions through experience. The most common approach
to learning value functions is the temporal difference (TD) method, which is described in the next
section.

3. Temporal Difference Algorithms for Reinforcement Learning

As stated in the Introduction, a comprehensive comparison of value function search and direct
policy-space search is beyond the scope of this paper. Nevertheless, it will be useful to point out key
conceptual differences between typical value function methods and typical evolutionary algorithms
for searching policy space. The most common approach for learning a value function V for RL
problems is the temporal difference (TD) method (Sutton, 1988).

The TD learning algorithm uses observations of prediction differences from consecutive states to
update value predictions. For example, if two consecutive states i and j return payoff prediction
values of 5 and 2, respectively, then the difference suggests that the payoff from state i may be
overestimated and should be reduced to agree with predictions from state j. Updates to the value
function V are achieved using the following update rule:

Vis) = Vs) + a(V(st+1) — V(se) + Tt) (4)

where a represents the learning rate and r; any immediate reward. Thus, the difference in predictions
(V(8¢41) — V(s:)) from consecutive states is used as a measure of prediction error. Consider a chain
of value predictions V(sq)..V (sn) from consecutive state transitions with the last prediction V(sn)
containing the only non-zero reward from the environment. Over many iterations of this sequence,
the update rule will adjust the values of each state so that they agree with their successors and
eventually with the reward received in V(s,). In other words, the single reward is propagated
backwards through the chain of value predictions. The net result is an accurate value function that
can be used to predict the expected reward from any state of the system.

As mentioned earlier, the goal of TD methods is to learn the value function for the optimal
policy, V™. Given V7" the optimal action, 7(s), can be computed using the following equation:

w(s) = arginax V™ (8(s,a)) (5)

Of course, we have already stated that in RL the state transition function 4(s,a) is unknown to the
agent. Without this knowledge, we have no way of evaluating (5). An alternative value function
that can be used to compute 7*(s) is called a Q-function, Q(s,a) (Watkins, 1989; Watkins & Dayan,
1992). The Q-function is a value function that represents the expected value of taking action a in
state s and acting optimally thereafter:

Q(s,a) =r(s) + V7 (8(s, a)) (6)
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al a2 a3 a4 a5 bl b2 b3 b4 b5 cl ¢2 ¢3 c4 b dl d2 d3 d4 d5 el e2 e3 ed ed
RI17 16 10 7 6 17 15 7 6 5 7 9 11 8 4 6 6 7 4 2 1 2 1 2 1
Dl 11 10 7 1 17 8 1 3 1 15 14 12 8 2 6 7 7 8 1 7 6 4 3 1

Table 1: A Q-function for the simple grid world. A value is associated with each state-action pair.

where r(s) represents any immediate reward received in state s. Given the Q-function, actions from
the optimal policy can be directly computed using the following equation:

m"(s) = argmax (s, ) ™

Table 1 shows the Q-function for the grid world problem of Figure 1. This table-based repre-
sentation of the Q-function associates cumulative future payoffs for each state-action pair in the
system. (The letter-number pairs at the top represent the state given by the row and column in
Figure 1, and R and D represent the actions right and down, respectively.) The TD method adjusts
the Q-values after each decision. When selecting the next action, the agent considers the effect of
that action by examining the expected value of the state transition caused by the action.

The Q-function is learned through the following TD update equation:

Q(st,ar) = Q(se,a1) + a(rg:if Q(3t41,6141) — Q(8t,a¢) +7(st)) ©)

Essentially, this equation updates Q(s¢,a:) based on the current reward and the predicted reward
if all future actions are selected optimally. Watkins and Dayan (1992) proved that if updates are
performed in this fashion and if every Q-value is explicitly represented, the estimates will asymptot-
ically converge to the correct values. A reinforcement learning system can thus use the Q values to
select the optimal action in any state. Because Q-learning is the most widely known implementa-
tion of temporal difference learning, we will use it in our qualitative comparisons with evolutionary
approaches in later sections.

4. Evolutionary Algorithms for Reinforcement Learning (EARL)

The policy-space approach to RL searches for policies that optimize an appropriate objective func-
tion. While many search algorithms might be used, this survey focuses on evolutionary algorithms.
We begin with a brief overview of a simple EA for RL, followed by a detailed discussion of features
that characterize the general class of EAs for RL.

4.1 Design Considerations for Evolutionary Algorithms

Evolutionary algorithms (EAs) are global search techniques derived from Darwin’s theory of evo-
lution by natural selection. An EA iteratively updates a population of potential solutions, which
are often encoded in structures called chromosomes. During each iteration, called a generation,
the EA evaluates solutions and generates offspring based on the fitness of each solution in the task
environment. Substructures, or genes, of the solutions are then modified through genetic operators
such as mutation and recombination. The idea is that structures that are associated with good
solutions can be mutated or combined to form even better solutions in subsequent generations. The
canonical evolutionary algorithm is shown in Figure 2. There have been a wide variety of EAs de-
veloped, including genetic algorithms (Holland, 1975; Goldberg, 1989), evolutionary programming
(Fogel, Owens, & Walsh, 1966), genetic programming (Koza, 1992), and evolutionary strategies
(Rechenberg, 1964).

EAs are general purpose search methods and have been applied in a variety of domains including
numerical function optimization, combinatorial optimization, adaptive control, adaptive testing,
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procedure EA

begin
t =0
initialize P(t);

evaluate structures in P(t);
while termination condition not satisfied do
begin
t=t+1;
select P(t) from P(t-1);
alter structures in P(t);
evaluate structures in P(t);
end
end.

Figure 2: Pseudo-code Evolutionary Algorithm.

and machine learning. One reason for the widespread success of EAs is that there are relatively few
requirements for their application, namely,

1. An appropriate mapping between the search space and the space of chromosomes, and
2. An appropriate fitness function.

For example, in the case of parameter optimization, it is common to represent the list of parameters
as either a vector of real numbers or a bit string that encodes the parameters. With either of
these representations, the “standard” genetic operators of mutation and cut-and-splice crossover can
be applied in a straightforward manner to produce the genetic variations required (see Figure 3).
_ The user must still decide on a (rather large) number of control parameters for the EA, including
population size, mutation rates, recombination rates, parent selection rules, but there is an extensive
literature of studies which suggest that EAs are relatively robust over a wide range of control
parameter settings (Grefenstette, 1986; Schaffer, Caruana, Eshelman, & Das, 1989). Thus, for
many problems, EAs can be applied in a relatively straightforward manner.

However, for many other applications, EAs need to be specialized for the problem domain (Grefen-
stette, 1987). The most critical design choice facing the user is the representation, that is, the
mapping between the search space of knowledge structures (or, the phenotype space) and the space
of chromosomes (the genotype space). Many studies have shown that the effectiveness of EAs is
sensitive to the choice of representations. It is not sufficient, for example, to choose an arbitrary
mapping from the search space into the space of chromosomes, apply the standard genetic opera-
tors and hope for the best. What makes a good mapping is a subject for continuing research, but
the general consensus is that candidate solutions that share important phenotypic similarities must
also exhibit similar forms of “building blocks” when represented as chromosomes (Holland, 1975).
It follows that the user of an EA must carefully consider the most natural way to represent the
elements of the search space as chromosomes. Moreover, it is often necessary to design appropriate
mutation and recombination operators that are specific to the chosen representation. The end result
of this design process is that the representation and genetic operators selected for the EA comprise a
form of search bias similar to biases in other machine learning methods. Given the proper bias, the
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Figure 3: Genetic operators on fixed-position representation. The two offspring are generated by
crossing over the selected parents. The operation shown is called one-point crossover.
The first offspring inherits the initial segment of one parent and the final segment of the
other parent. The second offspring inherits the same pattern of genes from the opposite
parents. The crossover point is position 3, chosen at random. The second offspring has
also incurred a mutation in the shaded gene.

EA can quickly identify useful “building blocks” within the population, and converge on the most
promising areas of the search space.!

In the case of RL, the user needs to make two major design decisions. First, how will the space
of policies be represented by chromosomes in the EA? Second, how will the fitness of population
elements be assessed? The answers to these questions depend on how the user chooses to bias the
EA. The next section presents a simple EARL that adopts the most straightforward set of design
decisions. This example is meant only to provide a baseline for comparison with more elaborate

designs.

4.2 A Simple EARL

As the remainder of this paper shows, there are many ways to use EAs to search the space of RL
policies. This section provides a concrete example of a simple EARL, which we call EARL;. The
pseudo-code is shown in Figure 4. This system provides the EA counterpart to the simple table-based
TD system described in Section 3.

The most straightforward way to represent a policy in an EA is to use a single chromosome per
policy with a single gene associated with each observed state. In EARLy, each gene’s value (or allele
in biological terminology) represents the action value associated with the corresponding state, as
shown in Figure 5. Table 2 shows part of an EARL; population of policies for the sample grid world
problem. The number of policies in a population is usually on the order of 100 to 1000.

The fitness of each policy in the population must reflect the expected accumulated fitness for an
agent that uses the given policy. There are no fixed constraints on how the fitness of an individual
policy is evaluated. If the world is deterministic, like the sample grid-world, the fitness of a policy can
be evaluated during a single trial that starts with the agent in the initial state and terminates when
the agent reaches a terminal state (e.g., falls off the grid in the grid-world). In non-deterministic
worlds, the fitness of a policy is usually averaged over a sample of trials. Other options include
measuring the total payoff achieved by the agent after a fixed number of steps, or measuring the
number of steps required to achieve a fixed level of payoff.

1. Other ways to exploit problem specific knowledge in EAs include the use of heuristics to initialize the population
and the hybridization with problem specific search algorithms. See (Grefenstette, 1987) for further discussions of
these methods.
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procedure EARL-1
begin
t =0;
initialize a population of policies, P(t);
evaluate policies in P(t);
while termination condition not satisfied do
begin
t=t+1;
select high-payoff policies, P(t), from policies in P(t-1);
update policies in P(t);
evaluate policies in P(t);
end
end.

Figure 4: Pseudo-code for Evolutionary Algorithm Reinforcement Learning system.

5,85 5 Sy
Policyiz | a; | a | a5 IENEE

Figure 5: Table-based policy representation. Each observed state has a gene which indicates the
preferred action for that state. With this representation, standard genetic operators such
as mutation and crossover can be applied.

Policy |al a2 a3 a4 a5 bl b2 b3 b4 b5 cl c2 c3 c4 c5 dl d2 d3 d4 d5 el e2 e3 e4 e |Fitness
1 DRDDRRRRRRDRDDRRDRRRDRRDER]| 8
2 IDDDDRRRRRRDDRRDRDRRRDRDDR]| 9
3 IRDDRRDRDRRDDDRDRDURRRDRDDD]| 17
4 [(DDDDRDRRRRRDRRRDRRDRDRDDR| 11
5 I[RDDDRDURRDRRDRRDRDRRDDRDDD| 16

Table 2: An EA population of five decision policies for the sample grid world. This simple policy
representation specifies an action for each state of the world. The fitness corresponds to
the payoffs that are accumulated using each policy in the grid world.

Once the fitness of all policies in the population has been determined, a new population is gener-
ated according to the steps in the usual EA (Figure 2). First, parents are selected for reproduction.
A typical selection method is to probabilistically select individuals based on relative fitness:

Fitness(p;) )
Yi=1 Fitness(p;)
where p; represents individual 7 and n is the total number of individuals. Using this selection rule, the

expected number of offspring for a given policy is proportional to that policy’s fitness. For example,
a policy with average fitness might have a single offspring, whereas a policy with twice the average

Pr(p,-) =
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Policy is [ Cil — a; Cp — ap Ci3 — ap l ooe l Cip — Qi j

Figure 6: Rule-based policy representation. Each gene represents a condition-action rule that maps
a set of states to an action. In general, such rules are independent of the position along
the chromosome. Conflict resolution mechanisms may be needed if the conditions of rules
are allowed to intersect.

fitness would have two offspring.2 Offspring are formed by cloning the selected parents. Then new
policies are generated by applying the standard genetic operators of crossover and mutation to the
clones, as shown in Figure 3. The process of generating new populations of strategies can continue
indefinitely or can be terminated after a fixed number of generations or once an acceptable level of
performance is achieved.

For simple RL problems such as the grid-world, EARL; may provide an adequate approach.
In later sections, we will point out some ways in which even EARL; exhibits strengths that are
complementary to TD methods for RL. However, as in the case of TD methods, EARL methods have
been extended to handle the many challenges inherent in more realistic RL problems. The following
sections survey some of these extensions, organized around three specific biases that distinguish EAs
for Reinforcement Learning (EARL) from more generic EAs: policy representations, fitness/credit-
assignment models, and RL-specific genetic operators.

5. Policy Representations in EARL

Perhaps the most critical feature that distinguishes classes of EAs from one another is the represen-
tation used. For example, EAs for function optimization use a simple string or vector representation,
whereas EAs for combinatorial optimization use distinctive representations for permutations, trees
or other graph structures. Likewise, EAs for RL use a distinctive set of representations for policies.
While the range of potential policy representations is unlimited, the representations used in most
EARL systems to date can be largely categorized along two discrete dimensions. First, policies
may be represented either by condition-action rules or by neural networks. Second, policies may be
represented by a single chromosome or the representation may be distributed through one or more
populations.

5.1 Single-Chromosome Representation of Policies
5.1.1 RULE-BASED POLICIES

For most RL problems of practical interest, the number of observable states is very large, and the
simple table-based representation in EARL; is impractical. For large scale state spaces, it is more
reasonable to represent a policy as a set of condition-action rules in which the condition expresses a
predicate that matches a set of states, as shown in Figure 6. Early examples of this representation
include the systems LS-1 (Smith, 1983) and LS-2 (Schaffer & Grefenstette, 1985), followed later by
SAMUEL (Grefenstette et al., 1990).

5.1.2 NEURAL NET REPRESENTATION OF POLICIES

As in TD-based RL systems, EARL systems often employ neural net representations as function
approximators. In the simplest case (see Figure 7), a neural network for the agent’s decision policy
is represented as a sequence of real-valued connection weights. A straightforward EA for parameter

2. Many other parent selection rules have been explored (Grefenstette, 1997a, 1997b).
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Policyi: [ w, | wy [ w3 | « [ W

Figure 7: A simple parameter representation of weights for a neural network. The fitness of the
policy is the payoff when the agent uses the corresponding neural net as its decision
policy.

optimization can be used to optimize the weights of the neural network (Belew, McInerney, &
Schraudolph, 1991; Whitley, Dominic, Das, & Anderson, 1993; Yamauchi & Beer, 1993). This
representation thus requires the least modification of the standard EA. We now turn to distributed
representations of policies in EARL systems.

5.2 Distributed Representation of Policies

In the previous section we outlined EARL approaches that treat the agent’s decision policy as a single
genetic structure that evolves over time. This section addresses EARL approaches that decompose a
decision policy into smaller components. Such approaches have two potential advantages. First, they
allow evolution to work at a more detailed level of the task, e.g., on specific subtasks. Presumably,
evolving a solution to a restricted subtask should be easier than evolving a monolithic policy for
a complex task. Second, decomposition permits the user to exploit background knowledge. The
user might base the decomposition into subtasks on a prior analysis of the overall performance task;
for example, it might be known that certain subtasks are mutually exclusive and can therefore be
learned independently. The user might also decompose a complex task into subtasks such that
certain components can be explicitly programmed while other components are learned.

In terms of knowledge representation in EARL, the alternative to the single chromosome rep-
resentation is to distribute the policy over several population elements. By assigning a fitness to
these individual elements of the policy, evolutionary selection pressure can be brought to bear on
more detailed aspects of the learning task. That is, fitness is now a function of individual sub-
policies or individual rules or even individual neurons. This general approach is analogous to the
classic TD methods that take this approach to the extreme of learning statistics concerning each
state-action pair. As in the case of single-chromosome representations, we can partition distributed
EARL representations into rule-based and neural-net-based classes.

5.2.1 DIsTRIBUTED RULE-BASED POLICIES

The most well-known example of a distributed rule-based approach to EARL is the Learning Clas-
sifier Systems (L.CS) model (Holland & Reitman, 1978; Holland, 1987; Wilson, 1994). An LCS
uses an evolutionary algorithm to evolve if-then rules called classifiers that map sensory input to
an appropriate action. Figure 8 outlines Holland’s LCS framework (Holland, 1986). When sensory
input is received, it is posted on the message list. If the left hand side of a classifier matches a
message on the message list, its right hand side is posted on the message list. These new messages
may subsequently trigger other classifiers to post messages or invoke a decision from the LCS, as in
the traditional forward-chaining model of rule-based systems.
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Figure 8: Holland’s Learning Classifier System.

condition action strength
aft - R 0.75
#2 — D 0.25
d3 — D 0.50

Table 3: LCS population for grid world. The # is a don’t care symbol which allows for generality
in conditions. For example, the first rule says “Turn right in column a.” The strength of a
rule is used for conflict resolution and for parent selection in the genetic algorithm.

In an LCS, each chromosome represents a single decision rule and the entire population represents
the agent’s policy. In general, classifiers map a set of observed states to a set of messages, which may
be interpreted as either internal state changes or actions. For example, if the learning agent for the
grid world in Figure 1 has two sensors, one for the column and one for the row, then the population

" in an LCS might appear as shown in Table 3. The first classifier matches any state in the column

a and recommends action R. Each' classifier has a statistic called strength that estimates the utility
of the rule. The strength statistics are used in both conflict resolution (when more than one action
is recommended) and as fitness for the genetic algorithm. Genetic operators are applied to highly
fit classifiers to generate new rules. Generally, the population size (i.e., the number of rules in the
policy) is kept constant. Thus classifiers compete for space in the policy.

Another way that EARL systems distribute the representation of policies is to partition the
policy into separate modules, with each module updated by its own EA. Dorigo and Colombetti
(1998) describe an architecture called ALECSYS in which a complex reinforcement learning task is
decomposed into subtasks, each of which is learned via a separate LCS, as shown in Figure 9. They
provide a method called behavior analysis and training (BAT) to manage the incremental training
of agents using the distributed LCS architecture.

The single-chromosome representation can also be extended by partitioning the policy across mul-
tiple co-evolving populations. For example, in the cooperative co-evolution model (Potter, 1997),
the agent’s policy is formed by combining chromosomes from several independently evolving pop-
ulations. Each chromosome represents a set of rules, as in Figure 6, but these rules address only
a subset of the performance task. For example, separate populations might evolve policies for dif-
ferent components of a complex task, or might address mutually exclusive sets of observed states.
The fitness of each chromosome is computed based on the overall fitness of the agents that employ
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Figure 9: A two-level hierarchical ALECSYS system. Each LCS learns a specific behavior. The
interactions among the rule sets are pre-programmed.
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Figure 10: Cooperative coevolutionary architecture from the perspective of the i** EA instance.
Each EA contributes a representative, which is merged with the others’ representatives
to form a collaboration, or policy for the agent. The fitness of each representative reflects
the average fitness of its collaborations.

that chromosome as part of its combined chromosomes. The combined chromosomes represent the
decision policy and are called a collaboration (Figure 10).

5.2.2 DISTRIBUTED NETWORK-BASED POLICIES

Distributed EARL systems using neural net representations have also been designed. In (Potter &
De Jong, 1995), separate populations of neurons evolve, with the evaluation of each neuron based
on the fitness of a collaboration of neurons selected from each population. In SANE (Moriarty &
Miikkulainen, 1996a, 1998), two separate populations are maintained and evolved: a population
of neurons and a population of network blueprints. The motivation for SANE comes from our
a priori knowledge that individual neurons are fundamental building blocks in neural networks.
SANE explicitly decomposes the neural network search problem into several parallel searches for
effective single neurons. The neuron-level evolution provides evaluation and recombination of the
neural network building blocks, while the population of blueprints search for effective combinations
of these building blocks. Figure 11 gives an overview of the interaction of the two populations.
Each individual in the blueprint population consists of a set of pointers to individuals in the
neuron population. During each generation, neural networks are constructed by combining the
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Figure 11: An overview of the two populations in SANE. Each member of the neuron population
specifies a series of connections (connection labels and weights) to be made within a
neural network. Each member of the network blueprint population specifies a series of
pointers to specific neurons which are used to build a neural network.

hidden neurons specified in each blueprint. Each blueprint receives a fitness according to how well
the corresponding network performs in the task. Each neuron receives a fitness according to how
well the top networks in which it participates perform in the task. An aggressive genetic selection
and recombination strategy is used to quickly build and propagate highly fit structures in both the
neuron and blueprint populations.

6. Fitness and Credit Assignment in EARL

Evolutionary algorithms are all driven by the concept of natural selection: population elements that
have higher fitness leave more offspring to later generations, thus influencing the direction of search
in favor of high performance regions of the search space. The concept of fitness is central to any
EA. In this section, we discuss features of the fitness model that are common across most EARL
systems. We specifically focus on ways in which the fitness function reflects the distinctive structure
of the RL problem.

6.1 The Agent Model

The first common features of all EARL fitness models is that fitness is computed with respect to an
RL agent. That is, however the policy is represented in the EA, it must be converted to a decision
policy for an agent operating in a RL environment. The agent is assumed to observe a description
" of the current state, select its next action by consulting its current policy, and collect whatever
reward is provided by the environment. In EARL systems, as in TD systems, the agent is generally
assumed to perform very little additional computation when selecting its next action. While neither
approach limits the agent to strict stimulus-response behavior, it is usually assumed that the agent
does not perform extensive planning or other reasoning before acting. This assumption reflects the
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fact that RE tasks involve some sort of control activity in which the agent must respond to a dynamic
environment within a limited time frame.

6.2 Policy Level Credit Assignment

As shown in the previous section, the meaning of fitness in EARL systems may vary depending on
what the population elements represent. In a single-chromosome representation, fitness is associated
with entire policies; in a distributed representation, fitness may be associated with individual decision
rules. In any case, fitness always reflects accumulated rewards received by the agent during the course
of interaction with the environment, as specified in the RL model. Fitness may also reflect effort
expended, or amount of delay.

It is worthwhile considering the different approaches to credit assignment in the TD and EA
methods. In a reinforcement learning problem, payoffs may be sparse, that is, associated only with
certain states. Consequently,.a payoff may reflect the quality of an extended sequence of decisions,
rather than any individual decision. For example, a robot may receive a reward after a movement
that places it in a “goal” position within a room. The robot’s reward, however, depends on many
of its previous movements leading it to that point. A difficult credit assignment problem therefore
exists in how to apportion the rewards of a sequence of decisions to individual decisions.

In general, EA and TD methods address the credit assignment problem in very different ways.
In TD approaches, credit from the reward signal is explicitly propagated to each decision made by
the agent Over many iterations, payoffs are distributed across a sequence of decisions so that an
appropriately discounted reward value is associated with each individual state and decision pair.

In simple EARL systems such as EARL;, rewards are associated only with sequences of decisions
and are not distributed to the individual decisions. Credit assignment for an individual decision is
made implicitly, since policies that prescribe poor individual decisions will have fewer offspring in
future generations. By selecting against poor policies, evolution automatically selects against poor
individual decisions. That is, building blocks consisting of particular state-action pairs that are
highly correlated with good policies are propagated through the population, replacing state-action
pairs associated with poorer policies.

Figure 12 illustrates the differences in credit assignment between TD and EARL; in the grid
world of Figure 1. The Q-learning TD method explicitly assigns credit or blame to each individual
state-action pair by passing back the immediate reward and the estimated payoff from the new state.
Thus, an error term becomes associated with each action performed by the agent. The EA approach
does not explicitly propagate credit to each action but rather associates an overall fitness with the
entire policy. Credit is assigned implicitly, based on the fitness evaluations of entire sequences of
decisions. Consequently, the EA will tend to select against policies that generate the first and third
sequences because they achieve lower fitness scores. The EA thus implicitly selects against action D
in state b2, for example, which is present in the bad sequences but not present in the good sequences.

6.3 Subpolicy Credit Assignment

Besides the implicit credit assignment performed on building blocks, EARL systems have also ad- '
dressed the credit assignment problem more directly. As shown in Section 4, the individuals in
an EARL system might represent either entire policies or components of a policy (e.g., component
rule-sets, individual decision rules, or individual neurons). For distributed-representation EARLs,
fitness is explicitly assigned to individual components. In cases in which a policy is represented
by explicit components, different fitness functions can be associated with different evolving popu-
lations, allowing the implementer to “shape” the overall policy by evolving subpolicies for specific
subtasks (Dorigo & Colombetti, 1998; Potter, De Jong, & Grefenstette, 1995). The most ambitious
goal is to allow the system to manage the number of co-evolving species as well as the form of
interactions (Potter, 1997). This exciting research is still at an early stage.
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Figure 12: Explicit vs. implicit credit assignment. The Q-learning TD method assigns credit to each
state-action pair based on the immediate reward and the predicted future rewards. The
EA method assigns credit implicitly by associating fitness values with entire sequences
of decisions.
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For example, in the LCS model, each classifier (decision rule) has a strength which is updated
using a TD-like method called the bucket brigade algorithm (Holland, 1986). In the bucket brigade
algorithm, the strength of a classifier is used to bid against other classifiers for the right to post
messages. Bids are subtracted from winning classifiers and passed back to the classifiers that posted
the enabling message on the previous step. Classifier strengths are thus reinforced if the classifier
posts a message that triggers another classifier. The classifier that invokes a decision from the LCS
receives a strength reinforcement directly from the environment. The bucket brigade bid passing
mechanism clearly bears a strong relation to the method of temporal differences (Sutton, 1988).
The bucket brigade updates a given classifier’s strength based on the strength of the classifiers that
fire as a direct result of its activation. The TD methods differ slightly in this respect because they
assign credit based strictly on temporal succession and do not take into account causal relations of
steps. It remains unclear which is more appropriate for distributing credit.

Even for single chromosome representations, TD-like methods have been adopted in some EARL
systems. In SAMUEL, each gene (decision rule) also maintains a quantity called strength that is used
to resolve conflict when more than one rule matches the agent’s current sensor readings. When
payoff is obtained (thereby terminating the trial), the strengths of all rules that fired during the
trial are updated (Grefenstette, 1988). In addition to resolving conflicts, a rule’s strength also plays
a role in triggering mutation operations, as described in the next section.

7. RL-Specific Genetic Operators

The creation of special genetic operators provides another avenue for imposing an RL-specific bias
on EAs. Specialized operators in EARL systems first appeared in (Holland, 1986), in which so-called
triggered operators were responsible for creating new classifiers when the learning agent found that
no classifier in its existing population matched the agent’s current sensor readings. In this case,
a high-strength rule was explicitly generalized to cover the new set of sensor readings. A similar
rule-creation operator was included in early versions of SAMUEL (Grefenstette et al., 1990). Later
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versions of SAMUEL included a number of mutation operators which created altered rules based on
an agent’s early experiences. For example, SAMUEL’s Specialization mutation operator is triggered
when a low-strength, general rule fires during an episode that results in high payoff. In such-a case,
the rule’s conditions are reduced in generality to more closely match the agent’s sensor readings.
For example, if the agent has a sensor readings (range = 40, bearing = 100) and the original
rule is:

IF range = [25,55] AND bearing = [0,180] THEN SET turn = 24 (strength 0.1)
then the new rule would be:
IF range = [35,45] AND bearing = [50,140] THEN SET turn = 24 (strength 0.8)

Since the episode triggering the operator resulted in high payoff, one might suspect that the original
rule was over-generalized, and that the new, more specific version might lead to better results. (The
strength of the new rule is initialized to the payoff received during the triggering episode.) This is
considered a Lamarckian operator because the agent’s experience is causing a genetic change which
is passed on to later offspring.®

SAMUEL also uses an RL-specific crossover operator to recombine policies. In particular, crossover
in SAMUEL attempts to cluster decision rules before assigning them to offspring. For example,
suppose that the traces of the most previous evaluations of the parent strategies are as follows (R; ;
denotes the j*! decision rule in policy 7): ’

Trace for parent #1:
Episode:

8. R1,3 - R1,1 - R1,7 - R1,5 ngh Payoff
9. Rio— Ri1s - Ria Low Payoff

Trace for parent #2:

4. Ro7 = Ry s Low Payoff
5. Rpg = Rao — Rog High Payoff

Then one possible offspring would be:
{Ris,.--,Ri3,Ri1,Ri7,Ri5,...,Ra6, Ra2  Raa,..., Ra}

The motivation here is that rules that fire in sequence to achieve a high payoff should be treated
as a group during recombination, in order to increase the likelihood that the offspring policy will
inherit some of the better behavior patterns of its parents. Rules that do not fire in successful
episodes (e.g., Ry g) are randomly assigned to one of the two offspring. This form of crossover is
not only Lamarckian (since it is triggered by the experiences of the agent), but is directly related to
the structure of the RL problem, since it groups components of policies according to the temporal
association among the decision rules.

3. Jean Baptiste Lamarck developed an evolutionary theory that stressed the inheritance of acquired characteristics,
in particular acquired characteristics that are well adapted to the surrounding environment. Of course, Lamarck’s
theory was superseded by Darwin’s emphasis on two-stage adaptation: undirected variation followed by selection.
Research has generally failed to substantiate any Lamarckian mechanisms in biological systems (Gould, 1980).
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8. Strengths of EARL

The EA approach represents an interesting alternative for solving RL problems, offering several
potential advantages for scaling up to realistic applications. In particular, EARL systems have been
developed that address difficult challenges in RL problems, including:

e Large state spaces;
o Incomplete state information; and
o Non-stationary environments.

This section focuses on ways that EARL address these challenges.

8.1 Scaling Up to Large State Spaces

Many early papers in the RL literature analyze the efficiency of alternative learning methods on
toy problems similar to the grid world shown in Figure 1. While such studies are useful as aca-
demic exercises, the number of observed states in realistic applications of RL is likely to preclude
any approach that requires the explicit storage and manipulation of statistics associated with each
observable state-action pair. There are two ways that EARL policy representations help address the
problem of large state spaces: generalization and selectivity.

8.1.1 PoLicy GENERALIZATION

Most EARL policy representations specify the policy at a level of abstraction higher than an explicit
mapping from observed states to actions. In the case of rule-based representations, the rule language
allows conditions to match sets of states, thus greatly reducing the storage required to specify a
policy. It should be noted, however, that the generality of the rules within a policy may vary
considerably, from the level of rules that specify an action for a single observed state all the way to
completely general rules that recommend an action regardless of the current state. Likewise, in neural
net representations, the mapping function is stored implicitly in the weights on the connections of
the neural net. In either case, a generalized policy representation facilitates the search for good
policies by grouping together states for which the same action is required.

8.1.2 PoLICY SELECTIVITY

Most EARL systems have selective representations of policies. That is, the EA learns mappings
from observed states to recommended actions, usually eliminating explicit information concerning
less desirable actions. Knowledge about bad decisions is not explicitly preserved, since policies that
make such decisions are selected against by the evolutionary algorithm and are eventually eliminated
from the population. The advantage of selective representations is that attention is focused on
profitable actions only, reducing space requirements for policies.

Consider our example of the simple EARL operating on the grid world. As the population
evolves, policies normally converge to the best actions from a specific state, because of the selective
pressure to achieve high fitness levels. For example, the population shown in Table 2 has converged
alleles (actions) in states a3,ab,b2,b5,d3,el, and e2. Each of these converged state-action pairs
is highly correlated with fitness. For example, all policies have converged to action R in state b2.
Taking action R in state b2 achieves a much higher expected return than action D (15 vs. 8 from
Table 1). Policies that select action D from state b2 achieve lower fitness scores and are selected
against. For this simple EARL, a snapshot of the population (Table 2) provides an implicit estimate
of a corresponding TD value function (Table 4), but the distribution is biased toward the more
profitable state-actions pairs.
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Table 4: An approximated value function from the population in Table 2. The table displays the
average fitness for policies that select each state-action pair and reflects the estimated
impact each action has on overall fitness. Given the tiny population size in this example,
the estimates are not particularly accurate. Note the question marks in states where
actions have converged. Since no policies select the alternative action, the population has
no statistics on the impact of these actions on fitness. This is different from simple TD
methods, where statistics on all actions are maintained.

3.0

ROAC
1.0

5

Figure 13: An environment with incomplete state information. The circles represent the states of
the world and the colors represent the agent’s sensory input. The agent is equally likely
to start in the red state or the green state

8.2 Dealing with Incomplete State Information

Clearly, the most favorable condition for reinforcement learning occurs when the agent can observe
the true state of the dynamic system with which it interacts. When complete state information is
available, TD methods make efficient use of available feedback by associating reward directly with
individual decisions. In real world situations, however, the agent’s sensors are more likely to provide
only a partial view that may fail to disambiguate many states. Consequently, the agent will often be
unable to completely distinguish its current state. This problem has been termed perceptual aliasing
or the hidden state problem. In the case of limited sensory information, it may be more useful to
associate rewards with larger blocks of decisions. Consider the situation in Figure 13, in which the
agent must act without complete state information. Circles represent the specific states of the world,
and the colors represent the sensor information the agent receives within the state. Square nodes
" represent goal states with the corresponding reward shown inside. In each state, the agent has a
choice of two actions (L or R). We further assume that the state transitions are deterministic and
that the agent is equally likely to start in either the state with the red or green sensor readings.

In this example, there are two different states that return a sensor reading of blue, and the agent
is unable to distinguish between them. Moreover, the actions for each blue state return very different
rewards. A Q function applied to this problem treats the sensor reading of blue as one observable
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Value Function Policy Optimal Policy

Red R R
Green L R
Blue R L
Expected Reward 1.0 1.875

Table 5: The policy and expected reward returned by a converged @ function compared to the
optimal policy given the same sensory information.

state, and the rewards for each action are averaged over both blue states. Thus, Q(blue, L) and
Q(blue, R) will converge to -0.5 and 1, respectively. Since the reward from Q(blue, R) is higher
than the alternatives from observable states red and green, the agent’s policy under Q-learning will
choose to enter observable state blue each time. The final decision policy under Q-learning is shown
in Table 5. This table also shows the optimal policy with respect to the agent’s limited view of its
world. In other words, the policy reflects the optimal choices if the agent cannot distinguish the two
blue states.

By associating values with individual observable states, the simple TD methods are vulnerable to
hidden state problems. In this example, the ambiguous state information misleads the TD method,
and it mistakenly combines the rewards from two different states of the system. By confounding
information from multiple states, TD cannot recognize that advantages might be associated with
specific actions from specific states, for example, that action L from the top blue state achieves a
very high reward.

In contrast, since EA methods associate credit with entire policies, they rely more on the net
results of decision sequences than on sensor information, that may, after all, be ambiguous. In this
example, the evolutionary algorithm exploits the disparity in rewards from the different blue states-
and evolves policies that enter the good blue state and avoid the bad one. The agent itself remains
unable to distinguish the two blue states, but the evolutionary algorithm implicitly distinguishes
among ambiguous states by rewarding policies that avoid the bad states.

For example, an EA method can be expected to evolve an optimal policy in the current example
given the existing, ambiguous state information. Policies that choose the action sequence R,L when
starting in the red state will achieve the highest levels of fitness, and will therefore be selected
for reproduction by the EA. If agents using these policies are placed in the green state and select
action L, they receive the lowest fitness score, since their subsequent action, L from the blue sensors,
returns a negative reward. Thus, many of the policies that achieve high fitness when started in the
red state will be selected against if they choose L from the green state. Over the course of many
generations, the policies must choose action R from the green state to maximize their fitness and
ensure their survival.

We confirmed these hypotheses in empirical tests. A Q-learner using single-step updates and
a table-based representation converged to the values in Table 5 in every run. An evolutionary
algorithm? consistently converged 80% of its population on the optimal policy. Figure 14 shows the
average percentage of the optimal policy in the population as a function of time, averaged over 100
independent runs.

Thus even simple EA methods such as EARL; appear to be more robust in the presence of hidden
states than simple TD methods. However, more refined sensor information could still be helpful. In
the previous example; although the EA policies achieve a better average reward than the TD policy,
the evolved policy remains unable to procure both the 3.0 and 1.0 rewards from the two blue states.
These rewards could be realized, however, if the agent could separate the two blue states. Thus, any
method that generates additional features to disambiguate states presents an important asset to EA

4. We used a binary tournament selection, a 50 policy population, 0.8 crossover probability, and 0.01 mutation rate.
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Figure 14: The optimal policy distribution in the hidden state problem for an evolutionary algo-
rithm. The graph plots the percentage of optimal policies in the population, averaged
over 100 runs.

methods. Kaelbling et al. (1996) describe several promising solutions to the hidden state problem, in
which additional features such as the agent’s previous decisions and observations are automatically
generated and included in the agent’s sensory information (Chrisman, 1992; Lin & Mitchell, 1992;
McCallum, 1995; Ring, 1994). These methods have been effective at disambiguating states for TD
methods in initial studies, but further research is required to determine the extent to which similar
methods can resolve significant hidden state information in realistic applications. It would be useful
to develop ways to use such methods to augment the sensory data available in EA methods as well.

8.3 Non-Stationary Environments

If the agent’s environment changes over time, the RL problem becomes even more difficult, since the
optimal policy becomes a moving target. The classic trade-off between exploration and exploitation
becomes even more pronounced. Techniques for encouraging exploration in TD-based RL include
adding an ezploration bonus to the estimated value of state-action pairs that reflects how long it
has been since the agent has tried that action (Sutton, 1990), and building a statistical model of
the agent’s uncertainty (Dayan & Sejnowski, 1996). Simple modifications of standard evolutionary
algorithms offer an ability to track non-stationary environments, and thus provide a promising
approach to RL for these difficult cases.

The fact that evolutionary search is based on competition within a population of policies suggest
some immediate benefits for tracking non-stationary environments. To the extent that the population
maintains a diverse set of policies, changes in the environment will bias selective pressure in favor
of the policies that are most fit for the current environment. As long as the environment changes
slowly with respect to the time required to evaluate a population of policies, the population should
be able to track a changing fitness landscape without any alteration of the algorithm. Empirical
studies show that maintaining the diversity within the population may require a higher mutation
rate than those usually adopted for stationary environments (Cobb & Grefenstette, 1993).

In addition, special mechanisms have been explored in order to make EAs more responsive to
rapidly changing environments. For example, (Grefenstette, 1992) suggests maintaining a random
search within a restricted portion of the population. The random population elements are analogous
to immigrants from other populations with uncorrelated fitness landscapes. Maintaining this source
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of diversity permits the EA to respond rapidly to large, sudden changes in the fitness landscape.
By keeping the randomized portion of the population to less than about 30% of the population, the
impact on search efficiency in stationary environments is minimized. This is a general approach that
can easily be applied in EARL systems.

Other useful algorithms that have been developed to ensure diversity in evolving popultions
include fitness sharing (Goldberg & Richardson, 1987), crowding (De Jong, 1975), and local mating
"(Collins & Jefferson, 1991). In Goldberg’s fitness sharing model, for example, similar individuals
are forced to share a large portion of a single fitness value from the shared solution point. Sharing
decreases the fitness of similar individuals and causes evolution to select against individuals in
overpopulated niches.

EARL methods that employ distributed policy representations achieve diversity automatically
and are well-suited for adaptation in dynamic environments. In a distributed representation, each
individual represents only a partial solution. Complete solutions are built by combining individuals.
Because no individual can solve the task on its own, the evolutionary algorithm will search for several
complementary individuals that together can solve the task. Evolutionary pressures are therefore
present to prevent convergence of the population. Moriarty and Miikkulainen (1998) showed how
the inherent diversity and specialization in SANE allow it to adapt much more quickly to changes
in the environment than standard, convergent evolutionary algorithms.

Finally, if the learning system can detect changes in the environment, even more direct response.
is possible. In the anytime learning model (Grefenstette & Ramsey, 1992), an EARL system main-
tains a case-base of policies, indexed by the values of the environmental detectors corresponding to
the environment in which a given policy was evolved. When an environmental change is detected,
the population of policies is partially reinitialized, using previously learned policies selected on the
basis of similarity between the previously encountered environment and the current environment. As
a result, if the environment changes are cyclic, then the population can be immediately seeded with
those policies in effect during the last occurrence of the current environment. By having a popula-
tion of policies, this approach is protected against some kinds of errors in detecting environmental
changes. For example, even if a spurious environmental change is mistakenly detected, learning is
not unduly affected, since only a part of the current population of policies is replaced by previously
learned policies. Zhou (1990) explored a similar approach based on LCS.

In summary, EARL systems can respond to non-stationary environments, both by techniques
~ that are generic to evolutionary algorithms and by techniques that have been specifically designed

with RL in mind.

9. Limitations of EARL

Although the EA approach to RL is promising and has a growing list of successful applications (as
outlined in the following section), a number of challenges remain.

9.1 Online Learning

We can distinguish two broad approaches to reinforcement learning —online learning and offine
learning. In online learning, an agent learns directly from its experiences in its operational envi-
ronment. For example, a robot might learn to navigate in a warehouse by actually moving about
its physical environment. There are two problems with using EARL in this situation. First, it is
likely to require a large number of experiences in order to evaluate a large population of policies.
Depending on how quickly the agent performs tasks that result in some environmental feedback, it
may take an unacceptable amount of time to run hundreds of generations of an EA that evaluates
hundreds or thousands of policies. Second, it may be dangerous or expensive to permit an agent to
perform some actions in its actual operational environment that might cause harm to itself or its
environment. Yet it is very likely that at least some policies that the EA generates will be very bad
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policies. Both of these objections apply to TD methods as well. For example, the theoretical results
that prove the optimality of Q-learning require that every state be visited infinitely often, which is
obviously impossible in practice. Likewise, TD methods may explore some very undesirable states
before an acceptable value-function is found.

For both TD and EARL, practical considerations point toward the use of offline learning, in which
the RL system performs its exploration on simulation models of the environment. Simulation models
provide a number of advantages for EARL, including the ability to perform parallel evaluations of
all the policies in a population simultaneously (Grefenstette, 1995). ‘

9.2 Rare States

The memory or record of observed states and rewards differs greatly between EA and TD methods.
Temporal difference methods normally maintain statistics concerning every state-action pair. As
states are revisited, the new reinforcement is combined with the previous value. New information
thus supplements previous information, and the information content of the agent’s reinforcement
model increases during exploration. In this manner, TD methods sustain knowledge of both good
and bad state-action pairs.

As pointed out previously, EA methods normally maintain information only about good policies
or policy components. Knowledge of bad decisions is not explicitly preserved, since policies that make
such decisions are selected against by the evolutionary algorithm and are eventually eliminated from
the population. For example, refer once again to Table 4, which shows the implicit statistics of the
population from Table 2. Note the question marks in states where actions have converged. Since
no policies in the population select the alternative action, the EA has no statistics on the impact of
these actions on fitness.

This reduction in information content within the evolving population can be a disadvantage with
respect to states that are rarely visited. In any evolutionary algorithm, the value of genes that have
no real impact on the fitness of the individual tends to drift to random values, since mutations tend
to accumulate in these genes. If a state is rarely encountered, mutations may freely accumulate in
the gene that describes the best action for that state. As a result, even if the evolutionary algorithm
learns the correct action for a rare state, that information may eventually be lost due to mutations.
In contrast, since table-based TD methods permanently record information about all state-action
pairs, they may be more robust when the learning agent does encounter a rare state. Of course, if a
TD method uses a function approximator such as a neural network as its value function, then it too
can suffer from memory loss concerning rare states, since many updates from frequently occurring
states can dominate the few updates from the rare states.

9.3 Proofs of Optimality

One of the attractive features of TD methods is that the Q-learning algorithm has a proof of
optimality (Watkins & Dayan, 1992). However, the practical importance of this result is limited,
since the assumptions underlying the proof (e.g., no hidden states, all state visited infinitely often)
are not satisfied in realistic applications. The current theory of evolutionary algorithms provide
a similar level of optimality proofs for restricted classes of search spaces (Vose & Wright, 1995).
However, no general theoretical tools are available that can be applied to realistic RL problems. In
any case, ultimate convergence to an optimal policy may be less important in practice than efficiently
finding a reasonable approximation.

A more pragmatic approach may be to ask how efficient alternative RL algorithms are, in terms
of the number of reinforcements received before developing a policy that is within some tolerance
level of an optimal policy. In the model of probably approzimately correct (PAC) learning (Valiant,
1984), the performance of a learner is measured by how many learning experiences (e.g., samples
in supervised learning) are required before converging to a correct hypothesis within specified error
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bounds. Although developed initially for supervised learning, the PAC approach has been extended
recently to both TD methods (Fiechter, 1994) and to general EA methods (Ros, 1997). These
analytic methods are still in an early stage of development, but further research along these lines
may one day provide useful tools for understanding the theoretical and practical advantages of
alternative approaches to RL. Until that time, experimental studies will provide valuable evidence
for the utility of an approach.

10. Examples of EARL Methods

Finally, we take a look at a few significant examples of the EARL approach and results on RL
problems. Rather than attempt an exhaustive survey, we have selected four EARL systems that
are representative of the diverse policies representations outlined in Section 5. SAMUEL represents
the class of single-chromosome rule-based EARL systems. ALECSYS is an example of a distributed
rule-based EARL method. GENITOR is a single chromosome neural-net system, and SANE is a
distributed neural net system. This brief survey should provide a starting point for those interested
in investigating the evolutionary approach to reinforcement learning.

10.1 SAMUEL

SAMUEL (Grefenstette et al., 1990) is an EARL system that combines Darwinian and Lamarckian
evolution with aspects of temporal difference reinforcement learning. SAMUEL has been used to learn
behaviors such as navigation and collision avoidance, tracking, and herding, for robots and other
autonomous vehicles.

SAMUEL uses a single-chromosome, rule-based representation for policies, that is, each member
of the population is a policy represented as a rule set and each gene is a rule that maps the state of
the world to actions to be performed. An example rule might be:

IF range = [35,45] AND bearing = [0,45] THEN SET turn = 16 (strength 0.8)

The use of a high-level language for rules offers several advantages over low-level binary pattern
languages typically adopted in genetic learning systems. First, it makes it easier to incorporate
existing knowledge, whether acquired from experts or by symbolic learning programs. Second, it is
easier to transfer the knowledge learned to human operators. SAMUEL also includes mechanisms to
allow coevolution of multiple behaviors simultaneously. In addition to the usual genetic operators of
crossover and mutation, SAMUEL uses more traditional machine learning techniques in the form of
Lamarckian operators. SAMUEL keeps a record of recent experiences and will allow operators such
as generalization, specialization, covering, and deletion to make informed changes to the individual
genes (rules) based on these experiences.

SAMUEL has been used successfully in many reinforcement learning applications. Here we will
briefly describe three examples of learning complex behaviors for real robots. In these applications
of SAMUEL, learning is performed under simulation, reflecting the fact that during the initial phases
of learning, controlling a real system can be expensive or dangerous. Learned behaviors are then
tested on the on-line system.

In (Schultz & Grefenstette, 1992; Schultz, 1994; Schultz & Grefenstette, 1996), SAMUEL is used to
learn collision avoidance and local navigation behaviors for a Nomad 200 mobile robot. The sensors
available to the learning task were five sonars, five infrared sensors, and the range and bearing to
. the goal, and the current speed of the vehicle. SAMUEL learned a mapping from those sensors to
the controllable actions — a turning rate and a translation rate for the wheels. SAMUEL took a
human-written rule set that could reach the goal within a limited time without hitting an obstacle
only 70 percent of the time, and after 50 generations was able to obtain a 93.5 percent success rate.

In (Schultz & Grefenstette, 1996), the robot learned to herd a second robot to a “pasture”. In
this task, the learning system used the range and bearing to the second robot, the heading of the
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second robot, and the range and bearing to the goal, as its input sensors. The system learned a
mapping from these sensors to a turning rate and steering rate. In these experiments, success was
measured as the percentage of times that the robot could maneuver the second robot to the goal
within a limited amount of time. The second robot implemented a random walk, plus a behavior
that made it avoid any nearby obstacles. The first robot learned to exploit this to achieve its goal
of moving the second robot to the goal. SAMUEL was given an initial, human-designed rule set with
a performance of 27 percent, and after 250 generations was able to move the second robot to the
goal 86 percent of the time.

In (Grefenstette, 1996) the SAMUEL EA system is combined with case-based learning to address
the adaptation problem. In this approach, called anytime learning (Grefenstette & Ramsey, 1992),
the learning agent interacts both with the external environment and with an internal simulation.
The anytime learning approach involves two continuously running and interacting modules: an
execution module and a learning module. The execution module controls the agent’s interaction with
the environment and includes a monitor that dynamically modifies the internal simulation model
based on observations of the actual agent and the environment. The learning module continuously
tests new strategies for the agent against the simulation model, using a genetic algorithm to evolve
improved strategies, and updates the knowledge base used by the execution module with the best
available results. Whenever the simulation model is modified due to some observed change in the
agent or the environment, the genetic algorithm is restarted on the modified model. The learning
system operates indefinitely, and the execution system uses the results of learning as they become
available. The work with SAMUEL shows that the EA method is particularly well-suited for anytime
learning. Previously learned strategies can be treated as cases, indexed by the set of conditions under
which they were learned. When a new situation is encountered, a nearest neighbor algorithm is used
to find the most similar previously learned cases. These nearest neighbors are used to re-initialize
the genetic population of policies for the new case. Grefenstette (1996) reports on experiments
in which a mobile robot learns to track another robot, and dynamically adapts its policies using
anytime learning as its encounters a series of partial system failures. This approach blurs the line
between online and offline learning, since the online system is being updated whenever the offline
learning system develops an improved policy. In fact, the offline learning system can even be executed
on-board the operating mobile robot.

10.2 ALECSYS

As described previously, ALECsYs (Dorigo & Colombetti, 1998) is a distributed rule-based EA
that supports an approach to the design of autonomous systems called behavioral engineering. In
this approach, the tasks to be performed by a complex autonomous systems are decomposed into
individual behaviors, each of which is learned via a learning classifier systems module, as shown in
Figure 9. The decomposition is performed by the human designer, so the fitness function associated
with each LCS can be carefully designed to reflect the role of the associated component behavior
within the overall autonomous system. Furthermore, the interactions among the modules is also
preprogrammed. For example, the designer may decide that the robot should learn to approach a
goal except when a threatening predator is near, in which case the robot should evade the predator.
The overall architecture of the set of behaviors can then be set such that the evasion behavior has
higher priority than the goal-seeking behavior, but the individual LCS modules can evolve decision
rules for optimally performing the subtasks.

ALECSYS has been used to develop behavioral rules for a number of behaviors for autonomous
robots, including complex behavior groups such as CuasE/FEED/EscAPE (Dorigo & Colombetti,
1998). The approach has been implemented and tested on both simulated robots and on real robots.
Because it exploits both human design and EARL methods to optimize system performance, this
method shows much promise for scaling up to realistic tasks.
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10.3 GENITOR

GENITOR (Whitley & Kauth, 1988; Whitley, 1989) is an aggressive, general purpose genetic algo-
rithm that has been shown effective when specialized for use on reinforcement-learning problems.
Whitley et al. (1993) demonstrated how GENITOR can efficiently evolve decision policies represented
as neural networks using only limited reinforcement from the domain.

GENITOR relies solely on its evolutionary algorithm to adjust the weights in neural networks.
In solving RL problems, each member of the population in GENITOR represents a neural network
as a sequence of connection weights. The weights are concatenated in a real-valued chromosome
along with a gene that represents a crossover probability. The crossover gene determines whether
the network is to be mutated (randomly perturbed) or whether a crossover operation (recombination
with another network) is to be performed. The crossover gene is modified and passed to the offspring
based on the offspring’s performance compared to the parent. If the offspring outperforms the
parent, the crossover probability is decreased. Otherwise, it is increased. Whitley et al. refer to this
technique as adaptive mutation, which tends to increase the mutation rate as populations converge.
Essentially, this method promotes diversity within the population to encourage continual exploration
of the solution space.

GENITOR also uses a so-called “steady-state” genetic algorithm in which new parents are selected
and genetic operators are applied after each individual is evaluated. This approach contrasts with
“generational” GAs in which the entire population is evaluated and replaced during each genera-
tion. In a steady-state GA, each policy is evaluated just once and retains this same fitness value
indefinitely. Since policies with lower fitness are more likely to be replaced, it is possible that a
fitness based on a noisy evaluation function may have an undesirable influence on the direction of
the search. In the case of the pole-balancing RL application, the fitness value depends on the length
of time that the policy can maintain a good balance, given a randomly chosen initial state. The
fitness is therefore a random variable that depends on the initial state. The authors believe that
noise in the fitness function had little negative impact on learning good policies, perhaps because
it was more difficult for poor networks to obtain a good fitness than for good networks (of which
there were many copies in the population) to survive an occasional bad fitness evaluation. This is
an interesting general issue in EARL that needs further analysis.

GENITOR adopts some specific modification for its RL applications. First, the representation
uses a real-valued chromosome rather than a bit-string representation for the weights. Consequently,
GENITOR always recombines policies between weight definitions, thus reducing potentially random
disruption of neural network weights that might result if crossover operations occurred in the middle
of a weight definition. The second modification is a very high mutation rate which helps to maintain
diversity and promote rapid exploration of the policy space. Finally, GENITOR uses unusually
small populations in order to discourage different, competing neural network “species” from forming
within the population. Whitley et al. (1993) argue that speciation leads to competing conventions
and produces poor offspring when two dissimilar networks are recombined.

Whitley et al. (1993) compare GENITOR to the Adaptive Heuristic Critic (Anderson, 1989, AHC),
which uses the TD method of reinforcement learning. In several different versions of the common
pole-balancing benchmark task, GENITOR was found to be comparable to the AHC in both learning
rate and generalization. One interesting difference Whitley et al. found was that GENITOR was more
consistent than the AHC in solving the pole-balancing problem when the failure signals occurs at
wider pole bounds (make the problem much harder). For AHC, the preponderance of failures appears
to cause all states to overpredict failure. In contrast, the EA method appears more effective in finding
policies that obtain better overall performance, even if success is uncommon. The difference seems
to be that the EA tends to ignore those cases where the pole cannot be balanced, and concentrate
on successful cases. This serves as another example of the advantages associated with search in
policy space, based on overall policy performance, rather than paying too much attention to the
value associated with individual states.
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10.4 SANE

The SANE (Symbiotic, Adaptive Neuro-Evolution) system was designed as a efficient method for
building artificial neural networks in RL domains where it is not possible to generate training data
for normal supervised learning (Moriarty & Miikkulainen, 1996a, 1998). The SANE system uses an
evolutionary algorithm to form the hidden layer connections and weights in a neural network. The
.neural network forms a direct mapping from sensors to actions and provides effective generalization
over the state space. SANE’s only method of credit assignment is through the EA, which allows it
to apply to many problems where reinforcement is sparse and covers a sequence of decisions. As
described previously, SANE uses a distributed representation for policies.

SANE offers two important advantages for reinforcement learning that are normally not present
in other implementations of neuro-evolution. First, it maintains diverse populations. Unlike the
canonical function optimization EA that converge the population on a single solution, SANE forms
solutions in an unconverged population. Because several different types of neurons are necessary
to build an effective neural network, there is inherent evolutionary pressure to develop neurons
that perform different functions and thus maintain several different types of individuals within the
population. Diversity allows recombination operators such as crossover to continue to generate new
neural structures even in prolonged evolution. This feature helps ensure that the solution space
will be explored efficiently throughout the learning process. SANE is therefore more resilient to
suboptimal convergence and more adaptive to changes in the domain. ‘

The second feature of SANE is that it explicitly decomposes the search for complete solutions into
a search for partial solutions. Instead of searching for complete neural networks all at once, solutions
to smaller problems (good neurons) are evolved, which can be combined to form an effective full
solution (a neural network). In other words, SANE effectively performs a problem reduction search
on the space of neural networks.

SANE has been shown effective in several different large scale problems. In one problem, SANE
evolved neural networks to direct or focus a minimax game-tree search (Moriarty & Miikkulainen,
1994). By selecting which moves should be evaluated from a given game situation, SANE guides the
search away from misinformation in the search tree and towards the most effective moves. SANE
was tested in a game tree search in Othello using the evaluation function from the former world
champion program Bill (Lee & Mahajan, 1990). Tested against a full-width minimax search, SANE
significantly improved the play of Bill, while examining only a subset of the board positions.

In a second application, SANE was used to learn obstacle avoidance behaviors in a robot arm
(Moriarty & Miikkulainen, 1996b). Most approaches for learning robot arm control learn hand-eye
coordination through supervised training methods where examples of correct behavior are explicitly
given. Unfortunately in domains with obstacles where the arm must make several intermediate
joint rotations before reaching the target, generating training examples is extremely difficult. A
reinforcement learning approach, however, does not require examples of correct behavior and can
learn the intermediate movements from general reinforcements. SANE was implemented to form
neuro-control networks capable of maneuvering the OSCAR-6 robot arm among obstacles to reach
random target locations. Given both camera-based visual and infrared sensory input, the neural
networks learned to effectively combine both target reaching and obstacle avoidance strategies.

For further related examples of evolutionary methods for learning neural-net control systems for
robotics, the reader should see (Cliff, Harvey, & Husbands, 1993; Husbands, Harvey, & Cliff, 1995;
Yamauchi & Beer, 1993).

11. Summary

This article began by suggesting two distinct approaches to solving reinforcement learning problems;
one can search in value function space or one can search in policy space. TD and EARL are
examples of these two complementary approaches. Both approaches assume limited knowledge of

224




EVOLUTIONARY ALGORITHMS FOR REINFORCEMENT LEARNING

the underlying system and learn by experimenting with different policies and using reinforcement
to alter those policies. Neither approach requires a precise mathematical model of the domain, and
both may learn through direct interactions with the operational environment.

Unlike TD methods, EARL methods generally base fitness on the overall performance of a policy.
In this sense, EA methods pay less attention to individual decisions than TD methods do. While at
first glance, this approach appears to make less efficient use of information, it may in fact provide a
robust path toward learning good policies, especially in situations where the sensors are inadequate
to observe the true state of the world.

It is not useful to view the path toward practical RL systems as a choice between EA and TD
methods. We have tried to highlight some of the strengths of the evolutionary approach, but we
have also shown that EARL and TD, while complementary approaches, are by no means mutually
exclusive. We have cited examples of successful EARL systems such as SAMUEL and ALECSYS that
explicitly incorporate TD elements into their multi-level credit assignment methods. It is likely that
many practical applications will depend on these kinds of multi-strategy approaches to machine
learning.

We have also listed a number of areas that need further work, particularly on the theoretical side.
In RL, it would be highly desirable to have a better tools for predicting the amount of experience
needed by a learning agent before reaching a specified level of performance. The existing proofs of
optimality for both Q-learning and EA are of extremely limited practical use in predicting how well
either approach will perform on realistic problems. Preliminary results have shown that the tools
of PAC analysis can be applied to both EA an TD methods, but much more effort is needed in this
direction.

Many serious challenges remain in scaling up reinforcement learning methods to realistic appli-
cations. By pointing out the shared goals and concerns of two complementary approaches, we hope
to motivate further collaboration and progress in this field.

References

Anderson, C. W. (1989). Learning to control an inverted pendulum using neural networks. IEEE
Control Systems Magazine, 9, 31-37.

Barto, A. G., Sutton, R. S., & Watkins, C. J. C. H. (1990). Learning and sequential decision making.
In Gabriel, M., & Moore, J. W. (Eds.), Learning and Computational Neuroscience. MIT Press,
Cambridge, MA.

Belew, R. K., McInerney, J., & Schraudolph, N. N. (1991). Evolving networks: Using the genetic
algorithm with connectionist learning. In Farmer, J. D., Langton, C., Rasmussen, S., & Taylor,
C. (Eds.), Artificial Life II Reading, MA. Addison-Wesley.

Chrisman, L. (1992). Reinforcement learning with perceptual aliasing: The perceptual distinctions
approach. In Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 183
188 San Jose, CA.

Cliff, D., Harvey, 1., & Husbands, P. (1993). Explorations in evolutionary robotics. Adaptive
Behavior, 2, 73-110.

Cobb, H. G., & Grefenstette, J. J. (1993). Genetic algorithms for tracking changing environments.
In Proc. Fifth International Conference on Genetic Algorithms, pp. 523-530.

Collins, R. J., & Jefferson, D. R. (1991). Selection in massively parallel genetic algorithms. In
Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 249-256 San
Mateo, CA. Morgan Kaufmann.

225

C-27




MORIARTY, SCHULTZ, & GREFENSTETTE

Dayan, P., & Sejnowski, T. J. (1996). Exploration bonuses and dual control. Machine Learning,
25(1), 5-22.

De Jong, K. A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D.
thesis, The University of Michigan, Ann Arbor, ML

Dorigo, M., & Colombetti, M. (1998). Robot Shaping: An Ezperiment in Behavioral Engineering.
MIT Press, Cambridge, MA.

Fiechter, C.-N. (1994). Efficient reinforcement learning. In Proccedings of the Seventh Annual
ACM Conference on Computational Learning Theory, pp. 88-97. Association for Computing
Machinery.

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial Intelligence through Simulated Fvolution.
Wiley Publishing, New York.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, MA.

Goldberg, D. E., & Richardson, J. (1987). Genetic algorithms with sharing for multimodal function
optimization. In Proceedings of the Second International Conference on Genetic Algorithms,
pp. 148-154 San Mateo, CA. Morgan Kaufmann.

Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms. IEEE Trans-
actions on Systems, Man & Cybernetics, SMC-16(1), 122-128.

Grefenstette, J. J. (1987). Incorporating problem specific knowledge into genetic algorithms. In
Davis, L. (Ed.), Genetic Algorithms and Simulated Annealing, pp. 42-60 San Mateo, CA.
Morgan Kaufmann.

Grefenstette, J. J. (1988). Credit assignment in rule discovery system based on genetic algorithms.
Machine Learning, 3(2/3), 225-245.

Grefenstette, J. J. (1992). Genetic algorithms for changing environments. In Ménner, R., & Mand-
erick, B. (Eds.), Parallel Problem Solving from Nature, 2, pp. 137-144.

Grefenstette, J. J. (1995). Robot learning with parallel genetic algorithms on networked computers.
In Proceedings of the 1995 Summer Computer Simulation Conference (SCSC ’95), pp. 352-257.

Grefenstette, J. J. (1996). Genetic learning for adaptation in autonomous robots. In Robotics and
Manufacturing: Recent Trends in Research and Applications, Volume 6, pp. 265-270. ASME
Press, New York.

Grefenstette, J. J. (1997a). Proportional selection and sampling algorithms. In Handbook of Fvolu-
tionary Computation, chap. C2.2. IOP Publishing and Oxford University Press.

Grefenstette, J. J. (1997b). Rank-based selection. In Handbook of Evolutionary Computation, chap.
C2.4. IOP Publishing and Oxford University Press.

Grefenstette, J. J., & Ramsey, C. L. (1992). An approach to anytime learning. In Proc. Ninth Inter-
national Conference on Machine Learning, pp. 189-195 San Mateo, CA. Morgan Kaufmann.

Grefenstette, J. J., Ramsey, C. L., & Schultz, A. C. (1990). Learning sequential decision rules using
simulation models and competition. Machine Learning, 5, 355-381.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial Intelligence. University of Michigan Press, Ann
Arbor, MI.

226




EVOLUTIONARY ALGORITHMS FOR REINFORCEMENT LEARNING

Holland, J. H. (1986). Escaping brittleness: The possibilities of general-purpose learning algorithms
applied to parallel rule-based systems. In Machine Learning: An Artificial Intelligence Ap-
proach, Vol. 2. Morgan Kaufmann, Los Altos, CA.

Holland, J. H. (1987). Genetic algorithms and classifier systems: Foundations and future directions.
In Proceedings of the Second International Conference on Genetic Algorithms, pp. 82-89 Hills-
dale, New Jersey.

Holland, J. H., & Reitman, J. S. (1978). Cognitive systems based on adaptive algorithms. In
Pattern-Directed Inference Systems. Academic Press, New York.

Husbands, P., Harvey, 1., & Cliff, D. (1995). Circle in the round: state space attractors for evolved
sighted robots. Robot. Autonomous Systems, 15, 83-106.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal
of Artificial Intelligence Research, 4, 237-285.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA.

Lee, K.-F., & Mahajan, S. (1990). The development of a world class Othello program. Artificial
-Intelligence, 43, 21-36. '

Lin, L.-J., & Mitchell, T. M. (1992). Memory approaches to reinforcement learning in non-Markovian
domains. Tech. rep. CMU-CS-92-138, Carnegie Mellon University, School of Computer Science.

McCallum, A. K. (1995). Reinforcement Learning with Selective Perception and Hidden State. Ph.D.
thesis, The University of Rochester.

Moriarty, D. E., & Miikkulainen, R. (1994). Evolving neural networks to focus minimax search.
In Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94), pp.
1371-1377 Seattle, WA. MIT Press.

Moriarty, D. E., & Miikkulainen, R. (1996a). Efficient reinforcement learning through symbiotic
evolution. Machine Learning, 22, 11-32.

Moriarty, D. E., & Miikkulainen, R. (1996b). Evolving obstacle avoidance behavior in a robot arm. In
From Animals to Animats: Proceedings of the Fourth International Conference on Simulation
of Adaptive Behavior (SAB-96), pp. 468-475 Cape Cod, MA.

Moriarty, D. E., & Miikkulainen, R. (1998). Forming neural networks through efficient and adaptive
co-evolution. Evolutionary Computation, 5(4), 373-399.

Potter, M. A. (1997). The Design and Analysis of a Computational Model of Cooperative Coevolution.
Ph.D. thesis, George Mason University.

Potter, M. A., & De Jong, K. A. (1995). Evolving neural networks with collaborative species. In
Proceedings of the 1995 Summer Computer Simulation Conference Ottawa, Canada.

Potter, M. A., De Jong, K. A., & Grefenstette, J. (1995). A coevolutionary approach to learn-
ing sequential decision rules. In Eshelman, L. (Ed.), Proceedings of the Sizth International
Conference on Genetic Algorithms Pittsburgh, PA.

Rechenberg, I. (1964). Cybernetic solution path of an experimental problem. In Library Translation
1122. Royal Aircraft Establishment, Farnborough, Hants, Aug. 1965.

227




MORIARTY, SCHULTZ, & GREFENSTETTE

Ring, M. B: (1994). Continual Learning in Reinforcement Environments. Ph.D. thesis, The Univer-
sity of Texas at Austin.

Ros, J. P. (1997). Probably approximately correct (PAC) learning analysis. In Handbook of Evolu-
tionary Computation, chap. B2.8. IOP Publishing and Oxford University Press.

Schaffer, J. D., Caruana, R. A., Eshelman, L. J., & Das, R. (1989). A study of control parameters
affecting online performance of genetic algorithms for function optimization. In Proceedings of
the Third International Conference on Genetic Algorithms, pp. 51-60. Morgan Kaufmann.

Schaffer, J. D., & Grefenstette, J. J. (1985). Multi-objective learning via genetic algorithms. In
Proceedings of the Ninth International Joint Conference on Artificial Intelligence, pp. 593—
595. Morgan Kaufmann.

Schultz, A. C. (1994). Learning robot behaviors using genetic algorithms. In Intelligent Automation
and Soft Computing: Trends in Research, Development, and Applications, pp. 607-612. TSI
Press, Albuquerque.

Schultz, A. C., & Grefenstette, J. J. (1992). Using a genetic algorithm to learn behaviors for au-
tonomous vehicles. In Proceedings of the AiAA Guidance, Navigation, and Control Conference
Hilton Head, SC.

Schultz, A. C., & Grefenstette, J. J. (1996). Robo-shepherd: Learning complex robotic behaviors.
In Robotics and Manufacturing: Recent Trends in Research and Applications, Volume 6, pp.
763-768. ASME Press, New York.

Smith, S. F. (1983). Flexible learning of problem solving heuristics through adaptive search. In
Proceedings of the Eighth International Joint Conference on Artificial Intelligence, pp. 422-
425. Morgan Kaufmann.

Sutton, R. (1990). Integrated architectures for learning, planning, and reacting based on approxi-
mate dynamic programming. In Machine Learning: Proceedings of the Seventh International
Conference, pp. 216-224.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning,
3, 9-44.

Sutton, R. S., & Barto, A. (1998). Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA.

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27, 1134-1142.

Vose, M. D., & Wright, A. H. (1995). Simple genetic algorithms with linear fitness. Evolutionary
Computation, 2, 347-368.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. Ph.D. thesis, University of Cambridge,
England.

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3), 279-292.

Whitley, D. (1989). The GENITOR algorithm and selective pressure. In Proceedings of the Third
International Conference on Genetic Algorithms, pp. 116-121 San Mateo, CA. Morgan Kauf-
man.

Whitley, D., & Kauth, J. (1988). GENITOR: A different genetic algorithm. In Proceedings of the
Rocky Mountain Conference on Artificial Intelligence, pp. 118-130 Denver, CO.

228

C-30




EVOLUTIONARY ALGORITHMS FOR REINFORCEMENT LEARNING

Whitley, D., Dominic, S., Das, R., & Anderson, C. W. (1993). Genetic reinforcement learning for
neurocontrol problems. Machine Learning, 13, 259-284.

Wilson, S. W. (1994). ZCS: A zeroth level classifier system. Evolutionary Computation, 2(1), 1-18.

Yamauchi, B. M., & Beer, R. D. (1993). Sequential behavior and learning in evolved dynamical
neural networks. Adaptive Behavior, 2, 219-246.

Zhou, H. (1990). CSM: A computational model of cumulative learning. Machine Learning, 5(4),
383-406.

229




APPENDIX D:

Evolvability in Dynamic Fitness Landscapes: A Genetic Algorithm Approach

John J. Grefenstette
Institute for Biosciences, Bioinformatics and Biotechnology
George Mason University
Manassas, VA 20110
gref@ib3.gmu.edu

Abstract- Evolvability refers to the adaptation of a pop-
ulation’s genetic operator set over time. In traditional
genetic algorithms, the genetic operator set, consisting of
mutation operators, crossover operators, and their asso-
ciated rates, is usually fixed. Here, we explore the effects
of allowing these operators and rates to vary under the
influence of selection. This paper focuses on the suitabil-
ity of alternative mutation models in dynamic landscapes.
The mutation models include both traditional models in
which all members of the population are subject the same
level of mutation and models in which mutation rates are
genetically controlled.

1 Introduction

This project takes a genetic algorithm approach to the study
of evolvability, meaning the adaptation of a population’s ge-
netic operator set over time (Liberman et. al, 1986). In tradi-
tional genetic algorithms, the genetic operator set, consisting
of mutation operators, crossover operators, and their associ-
ated rates, are fixed. Here, we explore the effects of allowing
some of these operators and rates to vary under the influence
of selection (Bick, 1997). This study focuses on dynamic fit-
ness landscapes. Genetic algorithms are expected to be well-
suited to problems in which the objective function, or fitness
landscape, changes over time. In nature, of course, the fitness
landscape is constantly changing due to physical changes as
well as the co-evolution of competing species.

The study of evolvability may lead to genetic algorithms
that are more efficient at searching in dynamic environments.
The study of evolvability is also motivated in part by its im-
portance in several research areas, including emerging infec-
tious diseases, environmentally-induced mutagenesis, human
genetic disease, cancer and aging. It is hoped that understand-
ing the behavior of several models of evolvability in artificial
evolving systems will point the way toward a better under-
standing of natural mechanisms in evolving systems (Liber-
man and Feldman, 1986; Wolfe et. al, 1989).

1.1 Previous Work

Research on adaptive operator probabilities in genetic algo-
rithms have usually addressed the optimization of fixed fit-
ness landscapes, and have explored adapting the operator
through externally imposed heuristics (Davis, 1989; Bick,

Proc. 1999 Congress on Evolutionary Computation. Washington,
DC. July 1999, 2031-2038.

1992). In contrast, this work continues a line of research con-
cerning self-adaptation of genetic operators (Bick, 1997). Of
course, self-adapting mutation rates are widely used in evo-
lution strategies (Bick and Schwefel, 1993). This work dif-
fers from much of the previous work by focusing on self-
adaptation in a genetic algorithm model for searching dy-
namic fitness landscapes.

In previous studies (Grefenstette, 1992; Cobb and Grefen-
stette, 1993), we explored modifications to a standard ge-
netic algorithm that would permit the tracking of optima in
non-stationary environments. These papers investigated two
mechanisms. First, a global hypermutation could occur at in-
tervals, effectively kicking the population into a temporary
random exploration mode. Second, a fixed percentage of the
population could be replaced by random immigrants. The lat-
ter mechanism was shown to be effective on some dynamic
landscapes, and resulted in little disruption in the case of sta-
tionary landscapes. Based on this previous work, we suspect
that hypermutation (or, equivalently, immigration) may be an
especially useful mutation strategy for adapting to dynamic
fitness landscapes. Our previous work was limited to a fixed
form of hypermutation and considered a very limited set of
test problems. This work aims to extend our previous work
by considering a wider range of mutation models as well as a
larger set of dynamic landscapes.

2 Methods

2.1 Genetic Algorithms

The genetic algorithm used in these studies is a standard gen-
erational model operating on binary genomes. The GA uses
proportional selection and 2-point crossover, but with a pos-
sibly varying mutation rate, explained below. Since we are
considering dynamic environments, all individuals are evalu-
ated in every generation.

In genetic algorithms on fixed fitness landscapes, the usual
practice is to scale the fitness by, say, increasing the base-
line value of the objective function against which fitness is
measured. This is necessary to maintain selective pressure as
the population converges toward high fitness regions (Grefen-
stette, 1986). In a dynamic fitness landscape, such baseline
scaling may lead to instabilities since the mean fitness of
the population may vary dramatically as the landscape shifts.
Therefore, baseline fitness scaling is disabled.




2.2 Models of Evolvability

Evolvability refers to the adaptation of a population’s genetic
operator set over time. This work explores evolvability by
comparing methods that vary operator rates under the influ-
ence of selection, mutation and crossover. In particular we
focus on the suitability of alternative mutation models in dy-
namic landscapes. Evolvable crossover operators will be con-
sidered in a future study. The mutation models include both
traditional models in which all members of the population
are subject to the same level of mutation and models in which
mutation rates are genetically controlled. Mutation control
genes (if any) do not contribute directly to the fitness calcula-
tion, but are used to determine the individual’s mutation rate.
The following mutation models are compared (model param-
eters are shown in parentheses):

Fixed Mutation Model, FM(m,): This is the baseline case
in which all individuals are subject to a fixed base mutation
rate m,., where mutation rate is defined in terms of the proba-
bility of randomly resetting each bit in the genome. That is, a
mutation rate of m, = 0.5 means that approximately half of
the bits will be reset to random values (not flipped).

Genetic Mutation Model, GM(a7): The mutation rate is
under genetic control. In this work, a 3-bit mutation control
gene is interpreted as an integer value k between 0 and 7. The
mutation rate for the individual is set to m, = ax + (k/8)),
where ay is the minimum mutation rate. Preliminary experi-
ments showed that unless a minimum mutation rate was spec-
ified, the genetically controlled mutation rate quickly con-
verges to 0. The likely explanation is that the mutation rate
levels form a Markov chain, with the mutation rate of zero
forming an absorbing state. That is, low mutation levels, once
established, are very difficult to overcome, since mutation it-
self is the primary means for changing the mutation rate. In
this study, we set apr = 0.03, s0 we expect a minimum mu-
tation rate of slightly over one mutation per genome per gen-
eration (on a genome of 43 bits).

Fixed Hypermutation Model, FH(h,,m,): During each
generation, a fixed fraction k. of the population is subject to
hypermutation (e.g. a random reset of the genotype). Based
on previous work (Grefenstette, 1992), this study adopts a
fixed hypermutation rate of h, = 0.2. That is, 20% of the
population is replaced by random individual in each gener-
ation. The remaining individuals are subject to the baseline
mutation rate m,. The effect of this mutation model is the
same as an influx of immigrants from some other uncorre-
lated fitness landscapes (Grefenstette, 1992).

Genetic Hypermutation Model, GH(ay, m,): In this
model the hypermutation rate is under genetic control. As
in the GM model, a 3-bit mutation control gene is inter-
preted as an integer value k between 0 and 7. The proba-
bility that the individual undergoes hypermutation is set to
h, = ag + (k/8). If the individual does not hypermutate,
then it is subjected to the base mutation rate m,. As with
GM, preliminary experiments showed that, in the absence of
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a minimum hypermutation rate, the genetically controlled hy-
permutation rate consistently converges to 0. Therefore, the
minimum hypermutation probability was set to ag = 0.05.

As indicated above, the mutation models are all depen-
dent on the underlying base mutation rate m,, except GM,
in which the mutation rate is entirely governed by the muta-
tion control gene (subject to the minimum mutation rate a ps).
These alternative mutation models are compared on a specific
class of dynamic landscapes, described in the following sec-
ton.

2.3 Models of Dynamic Fitness Landscapes

The “no-free-lunch” theorems of Wolpert and Macready
(1997) show that any comparison of competing algorithms
must be qualified by a specification of the class of problems
(i.e., fitness landscapes) under consideration. This insight has
led to the development of problem generators that can pro-
duce a large and well-characterized set of test landscapes (De
Jong, Potter and Spears, 1997; Morrison and De Jong, 1999).
For this study, we have developed a problem generator for
dynamic landscapes. Each landscape is composed of numer-
ous component landscapes, each of which can change inde-
pendently. By setting a few runtime parameters that specify
how the component landscapes change, the user can gener-
ate an indefinite number of distinct dynamic landscapes with
controllable characteristics along several dimensions of diffi-
culty. .

In this problem generator, individuals are interpreted as
points in n-dimensional real space, i.e.,

x = (£1,Z2, "+ Tn)

A dynamic landscape is specified as a set {g:} where each g;
is a component landscape consisting of a single, time-varying
n-dimensional Gaussian peak. The overall fitness landscape
is defined by:
f(x) = max gi(x)

That is, the fitmess of x is defined as the maximum contribu-
tion of any of the component peaks. Each peak g; is charac-
terized by three time-varying features: (1) its center ¢;, (2) its
amplitude A;, and (3) its width o;. These features are defined
as follows:

e The center c;(t) specifies the coordinates associated
with the maximum value of the peak at time ¢.

o The amplitude A;(t) is the fitness contribution obtained
by an individual located at the center of the peak.

e The width o;(t) specifies how the fitness contribution
from this peak decreases as a function of the distance
from the center of the peak.

Given these parameters, the fitness contribution to point =
from peak g; is defined by the formula:

gi(x) = Au(t) exp(—d(x,c;(1))*/ (2 07 (2)))




where d(x, c;(t)) is the Euclidean distance between x and the
peak’s center c;(t).

This formulation for the dynamic landscape offers several
useful features. First, the user can easily control the rate of
overall change by setting the speed at which the peaks move.
Second, the continuous nature of the landscapes makes it easy
to visualize (in low dimensions, at least). Third, the fact that
each local peak is Gaussian may be advantageous to some
local search algorithms, so the landscapes are not specially
constructed to favor genetic algorithms. Fourth, although
each peak is a Gaussian, the overall landscape may be fairly
“rugged” since the fitness is defined as the maximum contri-
bution from all the peaks. This definition produces discon-
tinuities in the derivatives wherever two peaks overlap (see
the Figure 1). Finally, this model scales up to provide a wide
range of levels of difficulty.

It is planned to make this problem generator available as
a stand-alone package for use by other genetic algorithm re-
searchers.

2.4 Computational Experiments
2.4.1 Dynamic Landscape Parameters

Given the flexibility of the problem generator, any empirical
study necessarily explores only a small fraction of the space
of dynamic fitness landscapes. In this study we generated
dynamic landscapes using the following parameters for the
problem generator:

e Domain: the 2-dimensional region bounded by (0,0)
and (100,100).

e Number of peaks = 256
o Number of optimal peaks = 1

o Initial location of peaks: uniformly distributed over the
domain.

o All peaks move in randomly selected directions over
time.

e Peak amplitudes are initialized to values chosen uni-
formly from the interval [10, 50], except that the unique
optimal peak has amplitude 100. Amplitudes do not
vary over time.

e Peak width = 4. That is, a peak’s fitness contribution
drops to about 50% of its amplitude at a distance of 4
from its center.

The motion of the individual peaks are controlled by
two additional parameters. The distance that a peak moves
per generation is selected uniformly from the interval (0.0,
maz_drift], where maz_dri ft is a run-time parameter. The
punctuation is the number of generations between changes in
the landscape.

In this paper, gradual landscapes are defined by setting
maz_drift = 1 and punctuation = 1; that is, all peaks
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Cross Section of Fitness Landscape at Generation 0

Fitness

Cross Section of Fitness Landscape at Generation 5

Fitness

Cross Section of Fitness Landscape at Generation 10

80 +

Fitness

Figure 1: Cross section of the fitness landscape through the
maximum height peak at generation 0, generation 5 and gen-
eration 10. All peaks move independently in random direc-
tions. The number of generations between changes and the
size of the average displacement are controllable parameters.




move a small distance each generation. It is difficult to dis-
play the movement in a static presentation like this paper, but
figure 1 attempts to convey the sort of changes that occur in
a gradual landscape. This figure shows a 1-dimensional cross
section of the two dimensional fitness landscape, with snap-
shots at generations 0, 5 and 10. The prominent global peak is
moving to the right, while the surrounding peaks each move
in random directions. Notice that the overall landscape can
have sharp valleys and irregular peaks caused by the intersec-
tion of two or more individual peaks.

To define abrupt landscapes, we set maz_drift = 50 and
punctuation = 20. Thus, abrupt landscapes are quiescent
for 20 generations and then change an amount equivalent to
50 generations of change in gradual landscapes, all at once.

2.4.2 Genetic Representation

In this study, genomes are represented by 43-bit strings.
Individuals are interpreted as two-dimensional points x =
(z1,z2) in the region bounded by (0,0) and (100,100). The
first 20 bits are interpreted as the value for z1, linearly scaled
to the interval [0.0, 100.0). Bits 21-40 are similarly inter-
preted as the value for z;. Bits 41-43 are interpreted as a
mutation control gene, as described in the definition of the
various mutation models above. The mutation control gene
does not directly affect the fitness of the individual.

2.4.3 Performance Metrics

There are many possible ways to measure how well a genetic
algorithm adapts in a dynamic environment. We report two
primary statistics: online performance and current-best per-
formance.

Online performance is simply the mean raw fitness of all
individuals generated during a given run (De Jong, 1975).
Online performance is an appropriate measure of how well
the GA tracks the changing fitness function, since a perfectly
tracking algorithm would quickly identify the optimal peak
and keep the population largely converged near the optimum.
The problem generator was designed such that the maximum
fitness is 100 at all times, so online values closer to 100 in-
dicate successfully convergence to the dynamically drifting
optimum.

On the other hand, the ultimate goal in most applications
of genetic algorithms is to get as close as possible to the op-
timal fitness value. Traditionally, offline performance, com-
puted as a running average of the best-so-far values, indicates
how quickly a genetic algorithm approaches the optimum (De
Jong, 1975). However, in a dynamic environment, the value
of previously found solutions is irrelevant. Hence, a better
measure of optimization is the current-best metric, computed
as the average value of the best fitness value in the current
population.

In practice, trade-offs are likely between these two per-
formance metrics. For example, we would expect that a ge-
netic algorithm with a very high mutation rate may exhibit

good current-best performance in some cases (if it can fre-
quently discover the optimum peak by chance), but the online
measure should suffer accordingly. On the other hand, a lo-
cal search algorithm that climbs the nearest peak and tracks
it may have a fairly high online performance score, but its
current-best score should not be much higher than its online
performance. Clearly, an ideal algorithm would maximize
both online and current-best performance.

2.4.4 Experimental Design

Several computational experiments are reported below. One
set of experiments concerned gradually changing landscapes;
the landscape changed slightly after each generation, so the
GA saw 200 slightly different (static) fitness functions in each
200 generation run. The second set of experiments concerned
abruptly changing landscapes; the landscape changed drasti-
cally every 20 generations. In this case, the GA saw 10 dif-
ferent (static) fitness functions in each 200 generation run.

In a given experiment, 100 complete runs of the GA were
performed for each mutation model. The 100 runs consisted
of 10 runs on each of 10 different dynamically changing land-
scapes (that is, 10 different gradually changing landscapes
or 10 different abruptly changing landscapes, as described
above). Each mutation model was tested on the same set of
10 dynamic landscapes. Each run lasted for 200 generations;
the population size was 100.

Finally, since all of the four mutation models except GM
depend in part on the underlying mutation rate, experiments
were repeated for several values of the base mutation rate. In
summary, the experiments were performed over all combina-
tions of the following conditions:

o Dynamic landscape class: gradual or abrupt.
o Base mutation rate:

m, = 0.001, 0.003, 0.01, 0.03, 0.06, 0.1, 0.2 or 0.3.

e Mutation model:
FM(m,), GM(0.03), FH(0.2, m,) or GH(0.05, m;).

For each experimental condition, statistics were gathered
from 100 runs of the genetic algorithm. Results are presented
in the next section.

3 Results

A natural first question is: how well do the various evolv-
ability models track the moving optima? Figures 2 and 3
show the time-series of the best-of-generation values aver-
aged! over all 100 runs of the genetic algorithms on gradu-
ally changing environments and dynamically changing envi-
ronments, respectively, when the baseline mutation rate is set
to m, = 0.03. This baseline mutation value is close to the

IError bars are omitted from all plots to improve readability.
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Figure 2: Tracking performance on gradual dynamic land-
scapes.
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Figure 3; Tracking performance on abrupt dynamic land-
scapes. '

commonly used mutation rate of 1/(genome length). These
figures suggest no significant difference between the fixed hy-
permutation model FH and the genetically controlled hyper-
mutation model GH. Likewise, there appears to be no signifi-
cant difference between the fixed mutation model FM and the
genetically controlled mutation model GM. However, there
does appear to be significant gap between the hypermutation
models and the ordinary mutation models.

In both figures, all mutation models successfully converge
toward the optimal peak during the first 20 generations. The
hypermutation models FM and GM are able to adapt consis-
tently to both gradual and abrupt changes in the fitness land-
scape. However, the ordinary mutation models FM and GM
appear to lose the ability to track gradually changing land-
scapes after about 50 generations. Furthermore, these muta-
tion models seem to be unable to explore adequately in the
case of abruptly changing landscapes, as shown by their be-
havior after generation 20 in figure 3.
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Figure 4: Current-best performance on gradual dynamic land-
scapes.
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Figure 5: Online performance on gradual dynamic land-
scapes.

Given the definition of the four mutation models, we ex-
pect that their relative performance will depend on the un-
derlying base mutation rate m,. Space does not permit the
display of similar graphs for all values of the underlying mu-
tation rate, so in the next sections we reduce each such graph
to a single value, averaged over all 200 generations.

3.1 Gradually Changing Landscapes

Figures 4 and 5 shows current-best and online performance
of the various mutation models on gradually changing land-
scapes, as a function of the underlying base mutation rate. As
expected, the GM curve is flat because GM is independent of
the underlying base mutation rate.

Figure 4 shows that the fixed hypermutation model FH
gives consistently higher current-best performance than the
other mutation models for m,. < 0.1. FH also gives slightly
better online performance than the other mutation models
when m, < 0.03. The FM model does worse than the
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Figure 6: Current-best performance on abrupt dynamic land-
scapes.

hypermutation models until the mutation rate is rather high
(m, > 0.3). The genetically controlled mutation rate model
GM shows essentially identical performance as the model
FM(0.03). In contrast, the GH model shows a level current-
best performance nearly as high as the FH model, and sig-
nificantly higher than the fixed mutation rate model, perhaps
thanks to the effects of the lower bound probability of hyper-
mutation (ag = 0.05).

As might be expected, the online performance for all mod-
els drops of as the base mutation rate increases beyond 0.1.
The current best performance also declines in this region of
parameter space, as all models approach the performance of
random search. We now examine how these observations
compare with more rapidly changing environments.

3.2 Abruptly Changing Landscapes

Our model of abruptly changing landscapes is that the land-
scape is fixed for 20 generations, at which time each peak
shifts immediately in a randomly selected direction, to a dis-
tance approximately 50 times as far as in the gradually chang-
ing case. Figures 6 and 7 show performance of the various
mutation models on abruptly changing landscapes. These
graphs are slightly lower than their counterparts in figures 4
and 5, but the relative strengths of the various mutation mod-
els are the same as in the gradually changing case. The FH
model again gives the highest current-best performance for
base mutation rates up to 0.1. And once again, the geneti-
cally controlled hypermutation model performs much more
like the fixed hypermutation model than the fixed mutation
model, indicating a significant level of genetically controlled
hypermutation. Online performance begins to drop off for all
models with m, > 0.03.
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Figure 7: Online performance on abrupt dynamic landscapes.

3.3 Genetically Controlled Mutation Models

Finally, we focus in more detail on the models with genet-
ically controlled mutation rates. In particular, we want to
know the extent to which the mutation rate can adapt to
changes in the environment when the mutation rate is under
genetic control.

One hypothesis is that individuals with a high muta-
tion rate have a selective advantage whenever the landscape
changing abruptly. This is due to the improved chances of
landing on a relatively favorable area by hypermutation, com-
pared to the many individuals clustered near the previous op-
timal peak and who must “move”” away by means of the base-
line mutation rate. Under this interpretation, having a high
hypermutation rate would be most favorable immediately af-
ter an abrupt change in the fitness landscape, and become pro-
gressively less favorable as the population converges to the
optimal peak. To examine this hypothesis, we collected mu-
tation rate statistics from the runs with abrupt changes in the
landscape.

Figure 8 shows a time-series of both the best fitness
values in the population and the level of hypermutation in
the population, averaged over the 100 runs of the model
GH(0.05,0.03) on abruptly changing landscapes. As the pop-
ulation converges to the region near the optimal peak, the
level of hypermutation decreases. When the landscape shifts,
the level of hypermutation increases.

To examine this phenomenon as a function of the base mu-
tation rates, see figure 9. In this figure, the pre-adaptive muta-
tion rate refers to the average genetically controlled hypermu-
tation rate in the population during the first 5 generations af-
ter an abrupt shift in the fitness landscape. The post-adaptive
mutation rate is the average hypermutation rate in the final
five generations before the landscape shifts.

There is a consistent drop in hypermutation rate between
the pre-adaptive stage and the post-adaptive stage. The differ-
ence is most pronounced when the underlying base mutation
rate is 0.03, but vanishes as the base rate increases beyond
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tion increases.
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Figure 9: Adaptive mutation rates in genetically controlled
hypermutation model on abrupt landscapes.

0.1 (probably because the genetically controlled hypermuta-
tion offers less fitness advantage when the base mutation rate
is very high). This evidence supports the hypothesis that the
hypermutation rate provides a selective advantage just after a
major shift in the landscape and that the advantage declines
over a period of stability in the fitness landscape.

4 Discussion

This paper focuses on the suitability of alternative mutation
models in dynamic landscapes. The mutation models include
both traditional models in which all members of the popu-
lation are subject the same level of mutation and models in

which mutation rates are genetically controlled. The alterna-
tive mutation models were compared by empirical tests on an
artificially generated set of dynamic fitness landscapes. The
main positive results are:

o Hypermutation strategies (in which some individuals
are randomly reset while the majority are subjected to
a base mutation rate) perform well in both gradually
changing and abruptly changing landscape.

e The hypermutation rate can be successfully controlled
genetically.

e When the hypermutation rate is controlled genetically,
it climbs just after an abrupt shift in the fitness land-
scape, and declines when the landscape remains stable
for a period.

Now that the problem generator for dynamic fitness land-
scapes has been developed, it will be possible to perform
much more extensive tests of alternate mutation models. Fu-
ture work will address the generality of these results on other
classes of landscapes. It would be of interest to know if
similar phenomena are observed on higher-dimensional land-
scapes, as well as landscapes with more rugged surfaces. Fur-
ther studies will also include genetically controlled crossover
operators. It is hoped that this line of research will eventually
yield useful insights into the application of genetic algorithms
to problems that involve dynamic fitness functions, as well as
insights into the phenomena of genetically controlled evolv-
ability in biological systems.
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